首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Volkov  I. I.  Kokryatskaya  N. M. 《Water Resources》2004,31(4):423-430
The occurrence and distribution of reduced inorganic sulfur compounds in the waters of the White Sea and the Northern Dvina mouth are studied. Universal occurrence of micro-quantities of the above compounds in the oxic marine and fluvial waters is established. The White Sea water is found to be depleted of reduced sulfur, judging by the sum of reduced S forms (<0.5 mol), as compared with that in the water of the Black and Baltic seas.  相似文献   

2.
Two research cruises on the Baltic Sea, in July and November of 1979, were made for investigating the Baltic Sea water for its contents of dissolved cadmium, lead and copper. Atomic absorption spectrophotometry and voltammetry were used as methods of investigation, the latter method having supplied slightly lower results. In the water layer of 0 … 50 m the cadmium concentrations were 0.03 … 0.05 μg/l and the lead concentrations were 0.1 … 0.2 μg/l, seasonal changes did not have any effect on them. The copper concentrations, on the other hand, were 0.4 … 1.2 μg/l in summer and 0.1 … 0.7 μg/l in autumn. Compared with ocean waters, the lead content is remarkably high. In anoxic deep waters of the Baltic Sea the concentrations of the three metals, especially that of cadmium, are very low (< 0.01 μg/l).  相似文献   

3.
The article gives the results of studying the concentration and composition of aliphatic and polycyclic aromatic hydrocarbons in suspension in surface waters at sections from the English Channel and Skagerak Strait to various regions of the Baltic Sea (2010–2015) and in water and bottom sediments of the southeastern part of the sea in the water area of the Kravtsovskoe field (2008–2015). In recent years, the surface waters of open areas of the Baltic Sea showed a decrease in hydrocarbon concentrations down to background levels (12–33 μg/L). The maximal concentration of hydrocarbons (in excess of the MAC) was recorded in different seasons in navigation areas, including the English Channel and Pregola R. mouth. In the zone of the Kravtsovskoe field, the concentration and composition of hydrocarbons in water depends on their inflow from the bank, and the same characteristics in bottom sediments, on the rate of their leakage from sediment stratum. A decline in these processes have led to a decrease in hydrocarbon concentrations in the sediments of a local area near D-6 platform to background levels (5–7 μg/g) and to the predominance of terrigenous, rather than petroleum, alkanes in hydrocarbon compositions.  相似文献   

4.
Literary data have been used to assess the inflow of petroleum hydrocarbons (with river runoff, precipitation, wastewaters, sea transport, and at ice thawing) into different regions of the White Sea. The hydroecological CNPSi-model was used as an instrument to reproduce the annual dynamics of hydrocarbon concentrations at their parallel inflow and subsequent transformation in the waters of the nine White Sea regions (the bays of Kandalaksha, Onega, Dvina, and Mezen; the Solovetskie Islands; the deep-water part: Bassein, Gorlo, Voronka, and Chupa Bay). The calculations were based on normal annual values of monthly variations of water temperature, light intensity, and transparency, the morphometric parameters of the regions (water areas, mean depths, and water volumes) and water exchange between the regions and with the Barents Sea (calculated by a hydrodynamic model). The calculated concentrations of hydrocarbons, the biomasses and activity characteristics of hydrocarbon-oxidizing bacteria have been analyzed (their values were estimated for the 2-m surface water layer). The results of calculations were used to evaluate hydrocarbon balances for regions and the sea as a whole. The calculations demonstrate the balanced character of hydrocarbon fluxes, the balance discrepancy for the regions being <0.1–16.1%.  相似文献   

5.
Pore water has been extracted from Boom Clay by mechanical squeezing. Clay cores were obtained from various boreholes, all drilled at the SCK·CEN domain (Mol, Belgium).In contrast to pore water collected from piezometers, high sulphate concentrations are measured in the squeezed pore water. The lowest sulphate concentrations (<60 mg/l) were measured in pore waters squeezed immediately after drilling. Higher sulphate concentrations were often measured in the pore water when the clay cores were preserved for some time (generally <500 mg/l SO42−, but sometimes up to 20,000 mg/l SO42−). Nevertheless, a relation between preservation time and sulphate content could not be retrieved. However, major ion concentrations were obviously correlated with the sulphate content in the squeezed waters. The observed evolution in chemical composition were explained by water–rock interactions considering the pyrite oxidation and the subsequent ion exchange and mineral dissolution reactions.  相似文献   

6.
In the catchment area of the Pomeranian Bay an average mercury concentration of 178 ng/l in precipitation was determined. Eight different flowing waters showed mean concentrations between 105 ng/l (?upawa) and 500 ng/l (Odra), a pronounced annual cycle having been demonstrated for the concentrations and for the freights with the minimum in February/March and the maximum in August/September. The total freight of the eight rivers amounts to 19.5 t/a, the share of the Wisla being 11 t/a. The ratio between the mercury precipitation of 335 to 410 μg/m2a Hg and the run-off varies of 30 … 75 μg/m2a Hg for the individual river basins between 0.08 and 0.21. In the Baltic Sea, the mercury concentrations are 40 ng/l in the open sea, 50 ng/l in the coastal region and 290 … 390 ng/l near the estuaries. Trough the eight investigated rivers about 48 km3/a water run off into the Baltic Sea with about 20 t/a Hg. The total introduction of Hg into the Baltic Sea is estimated at 100 t/a with the river water, 35 t/a with precipitation and 35 t/a with dust.  相似文献   

7.
This paper presents the status of summer oxygen conditions in estuarine and coastal waters around Ireland between 2003 and 2007. Of the 95 water bodies surveyed, 85 had oxygen levels sufficient to support aquatic life. This corresponds to a surface area of 3125 km2 or 99.4% of the total area assessed. Ten water bodies, representing a surface area of 20.2 km2, were deficient in oxygen but still capable of supporting most aquatic life. No evidence of hypoxia (<2.0 mg/l O2) or anoxia (<0.2 mg/l O2) was found. Dissolved oxygen conditions in a number of estuaries continue to improve, probably due to improved municipal waste water treatment. The implementation of measures contained in both the Nitrates and Urban Waste Water Treatment Directives, together with those of the Water Framework Directive, should ensure areas of oxygen deficiency are eliminated from Irish waters.  相似文献   

8.
Dissolved copper concentrations at five stations in the eastern Atlantic between 20 and 24°N are presented. The metal is depleted in surface waters with concentrations ranging from 1.1 to 1.7 nmol/l. Marked increases in concentration were found in near-bottom waters with levels up to 10.9 nmol/l; these are attributed to the release of dissolved copper from the surface sediment.  相似文献   

9.
The materials presented in this paper were collected in the course of studies of phytoplankton and photosynthetic pigments in the Upper Volga reservoirs within the territory of Yaroslavl province. In 1995–2000, the phytoplankton in these water bodies was found to be represented mainly by diatom, blue-green, green, and in some cases, cryptophyte algae. It was found that in the channel parts of the reservoirs, the population of planktonic algae varied from 25 to 96180 thousand cell/l, their biomass, from 0.009 to 5.54 mg/l, and the chlorophyll content, from 0.4 to 22.4 g/l. The values of saprobity index in terms of phytoplankton were found to characterize waters of all the three reservoirs as -mesosaprobic, and the extent of blue-green algae development in the overwhelming majority of cases was classed as environmentally safe, although their abundance in the coastal zone sometimes is an indication of a substantial deterioration in water quality.  相似文献   

10.
During August-September 1993, a joint Russian-United States expedition to the Bering and Chukchi Seas took place. Surface water samples were collected from 21 sites and separated into dissolved (duplicates) and suspended solids; 19 sediment and 6 air samples were also collected. These samples were analysed for 19 organochlorine pesticides, 11 chlorobenzenes and 113 PCB congeners. The report provides data on selected compounds which occured in > or = 75% of the water samples. Highest water concentrations were observed for HCH in open waters north and south of the Bering Strait, both regions being similar (alpha-HCH; 2.2 ng/L and lindane: 0.35 ng/L). Air levels observed were also constant (alpha-HCH; 0.041 ng/m3, lindane: 0.0093 ng/m3). Suspended solids and air particulares contributed little to the concentrations in their respective media, an observation common to all analytes except for the PCBs and the DDT residues. The sum of PCB concentrations in water were higher in the Bering Sea area compared to the Chukchi Sea (1.0 vrs 0.67 ng/L) and lower for air (0.46 vrs 0.23 ng/m3). Sum of DDT in water was higher in the Bering Sea than in the Chukchi Sea (0.23 vrs 0.15 ng/L) while in sediments and air, the Bering Sea concentrations were lower (0.95 vrs 1.6 ng/g and 36 vrs 56 pg/m3, respectively). Other organochlorine compounds for which data are presented include: pp'-DDE, pp'-DDT, dieldrin, HCB, 3 chlorobenzenes and 3 PCB congeners. Fluxes of all these chemicals through the Berin Strait are estimated; they ranged from 57 t/a (alpha-HCH) through 26 t/a (for sum of PCBs) to 0.2 t/a (pp'-DDE, dieldrin and 1,2,3-trichlorobenzene). Fugacity ratios for the HCHs and PCBs indicate the alpha-HCH is degassing in both the Bering and Chukchi Seas and that the gamma-isomer is degassing in the Bering Sea and is close to equilibrium (weakly absorbing) in the Chuchi Sea; the sum of PCBs are strongly absorbing in both areas.  相似文献   

11.
Water sampling during the 1993 IV Russian–US Joint Expedition to the Bering and Chukchi Seas (BERPAC) indicates that Pacific Ocean burdens of the long-lived radionuclide 129I are relatively low in the Pacific-influenced Arctic, particularly compared to high latitude waters influenced by the North Atlantic. These low concentrations occur despite the presence of potential submerged anthropogenic sources in the East Sea (Sea of Japan), and in the northwest Pacific Ocean, east of the Kamchatka Peninsula. The concentration of 129I entering the Arctic Ocean through Bering Strait, 0.7×108 atoms kg−1, is only slightly higher than observed in deep Pacific waters. Similar concentrations (0.44–0.76×108 atoms kg−1) measured in Long Strait indicate no significant transfer of 129I eastward into the Chukchi Sea in the Siberian Coastal Current from the Siberian marginal seas to the west. However, the concentrations reported here are more than an order of magnitude higher than the Bering Strait input concentration estimated (1.0×106 atoms kg−1) from bomb fallout mass balances, which supports other existing evidence for a significant atmospheric deposition term for this radionuclide in surface ocean waters. Near-bottom water samples collected in productive waters of the Bering and Chukchi Seas also suggest that sediment regeneration may locally elevate 129I concentrations, and impact its utility as a water mass tracer. As part of this study, two deep 129I profiles were also measured in the East Sea in 1993–1994. The near-surface concentration of 129I ranged from 0.12 to 0.31×108 atoms kg−1. The 129I concentration showed a steady decrease with depth, although because of active deep water ventilation, the entire 3000 m water column exceeded natural concentrations of the radionuclide. Atom ratios of 129I/137Cs in the East Sea also suggest an excess of 129I above bomb fallout estimates, also possibly resulting from atmospheric deposition ultimately originating from nuclear facilities.  相似文献   

12.
The seasonal vertical distribution of particulate matter (PM) was studied in two contrasting areas: (a) the mesotrophic Skagerrak (in the North Sea); and (b) the oligotrophic northeastern Aegean Sea (eastern Mediterranean). Similarities and differences of the PM distribution in the two areas are assessed with respect to the prevailing hydrographic conditions and the PM composition. Hydrographic conditions in both of the areas are characterised by strong density gradients, resulting from the inflow of low-salinity water, i.e. Baltic Sea water and Black Sea water for the Skagerrak and the northeastern Aegean Sea, respectively.Enhanced primary production and particles mainly of biogenic origin characterise the mesotrophic Skagerrak, whereas five-fold lower particle concentrations appeared in the oligotrophic Aegean Sea. The input of riverine particulates was limited in both of the areas. In the Skagerrak, the strong stratification resulted in particle accumulation on/above the pycnocline and the development of pronounced intermediate nepheloid layers (INLs). The pycnocline-related INLs were formed entirely by dinoflagellates. The pycnocline hindered the vertical movement and sinking rates of particles, thus favouring primary production. Particle horizontal advection along the density discontinuities was probably enhanced. This pattern was not observed in the stratified waters of the northeastern Aegean Sea, probably due to the very low particle concentrations and/or the fact that phytoplankton maxima appeared in deeper waters. Pronounced INLs were identified in the Skagerrak below the pycnocline; these are attributed to accumulated or advected dinoflagellate skeletal remains mixed with clay mineral particles. This was revealed only by means of SEM observations. X-ray diffraction analysis could not provide information on the type of phytoplankton present, because dinoflagellates form their skeletons from organic material. Frontal stations in the northeastern Aegean Sea exhibited pronounced vertical movement of particles towards the deeper waters. Benthic nepheloid layers (BNL) were observed in the Skagerrak; these were related to the resuspended fine-grained surface sediments. In the northeastern Aegean Sea, although near-bottom current velocities were sufficient to resuspend surface sediments, resuspension occurred only episodically. The BNLs here are related mostly to near-bottom phytoplankton growth.  相似文献   

13.
Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ~750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (~50,000mg/l), horticulture (~3000mg/l), dryland cropping (~2000mg/l), cotton (~600mg/l) and grazing on native pastures (~300mg/l). The highest median TN concentrations are from horticulture (~32,000μg/l), cotton (~6500μg/l), bananas (~2700μg/l), grazing on modified pastures (~2200μg/l) and sugar (~1700μg/l). For TP it is forestry (~5800μg/l), horticulture (~1500μg/l), bananas (~1400μg/l), dryland cropping (~900mg/l) and grazing on modified pastures (~400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed.  相似文献   

14.
Antifouling herbicides in the coastal waters of western Japan   总被引:1,自引:0,他引:1  
Residue analyses of some antifouling herbicides (Diuron, Irgarol 1051 and the latter's degradation product M1, which is also known as GS26575), were conducted in waters collected along the coast of western Japan. In total, 142 water samples were collected from fishery harbours (99 sites), marinas (27 sites), and small ports (16 sites) around the Seto Inland Sea, the Kii Peninsula, and Lake Biwa, in August 1999. A urea-based herbicide, Diuron, was positively identified for the first time in Japanese aquatic environments. Diuron was detected in 121 samples (86%) up to a highest concentration of 3.05 microg/l, and was found in 86% of samples from fishery harbours, 89% from marinas, and 75% from ports. Four freshwater samples out of 11 collected at Lake Biwa contained Diuron. Neither Irgarol 1051 nor M1 was found in the lake waters, but both were found in many coastal waters. Irgarol 1051 was found in 84 samples (60%) at a highest concentration of 0.262 microg/l. The concentrations detected were of similar magnitude to those in our previous surveys, taken in 1997 and 1998. M1 was found in 40 samples (28%) up to a highest concentration of 0.080 microg/l. The concentrations detected were generally lower than those found in our previous surveys. The detection frequency among fishery harbours, marinas, and ports was 57-70% for Irgarol 1051 and 25-30% for M1. Ninety-five per cent of the coastal waters in which M1 was detected also contained Irgarol 1051, and 93% of the samples in which Irgarol 1051 was detected also contained Diuron. These results clearly suggest that commercial ship-bottom paints containing both Diuron and Irgarol 1051 are used extensively in the survey area.  相似文献   

15.
ABSTRACT

The regional groundwater groups of central Israel include:

  1. bicarbonate waters representing the replenishment areas;

  2. chloride waters representing the confined and the base-level zones;

  3. sulfate waters of the intermediate zones (fig. 2).

These water types were found to fit broadly into five hydrogeographical groups.

The chemical evolution of the ground waters is a function of: a) lithology and solubility of the aquifer components and of the surrounding strata; b) mixing between groundwater bodies of different composition. The first factor is important mainly within the confined zones while the latter is conspicuous in the Rift Valley and adjacent areas.

Groundwater mixing within the Dead Sea basin produces waters with Mg > Na > Ca, and Cl ? SO > HCO3. Other brines show the order: Ca > Na > Mg. All these brines show compositions different from ocean water.  相似文献   

16.
Artificial ground water containing 40 mg/l Ca and varying concentrations of Fe(II), Fe(III) and Si were rapidly oxidized with air. The ferrihydrite forming is similar to those found in natural Finish ground waters.  相似文献   

17.
Materials of long-term studies of the concentration and distribution of N forms (NH4+, NO3, NO2, Norg) in precipitation, surface water and groundwater are generalized. Precipitation was found to be the main source of N compounds input into these waters. The effect of anthropogenic factors is local and does not influence the concentration and distribution of N forms in most water bodies that serve as wastewater recipients. The N forms dominating in precipitation are NO3 and N H4+; Norg dominates in most surface water bodies, and NO3 dominates in groundwater. The median concentrations of Ntot in clear surface and subsurface waters are similar. The obtained characteristics of the concentrations and distribution of N forms in natural waters of Karelia can be used for other water bodies in the humid zone.  相似文献   

18.
以淮南后湖非稳沉采煤沉陷区沉积物-水体界面为研究对象,分析该湖未开发区(A区)、水产养殖区(B区)和水生蔬菜种植区(C区)3个功能区上覆水-间隙水-沉积物体系中氮、磷分布及其迁移特征.结果表明,氮、磷在不同水体界面的分布差异较大.其中上覆水中氮、磷浓度表现为A区B区C区;间隙水中氮、磷分布差异不显著,然而各功能区间隙水的氮、磷浓度明显高于上覆水,氮、磷主要由间隙水向上覆水中移动;沉积物中氮、磷含量以C区最高.后湖采煤沉陷区水体表现出氮污染、磷限制的现象.  相似文献   

19.
Nutrient Transport into the White Sea with River Runoff   总被引:1,自引:0,他引:1  
Leonov  A. V.  Chicherina  O. V. 《Water Resources》2004,31(2):152-173
Averaged data from long-term observations of concentrations of mineral-nutrient fractions along with fragmentary data and indirect estimates of organic-component concentrations in the tributaries of the sea (the Niva, the Onega, the Northern Dvina, the Mezen, and the Kem rivers) are analyzed. Monthly variations in the concentrations of the major nutrients in the river water flowing into the sea are characterized, and relationships between them in different seasons are determined. Annual nutrient transport into the White Sea by river water is assessed based on characteristics of river runoff and nutrient concentrations using a mathematical model. Wide variations are established in the ratios of organic and mineral fractions of nutrients delivered into the sea. The shares of mineral components in the total runoff of Ntot and Ptot into the sea are found to be equal to 18.1 and 18.8%, respectively.  相似文献   

20.
The concentrations of chlorophyll-a (chl-a), total suspended solids (TSS) and the absorption coefficient of colored dissolved organic matter (aCDOM(400)) are estimated in Case II waters using medium resolution imaging spectrometer (MERIS) satellite (full resolution [FR] level 1b, 300 m resolution) and AISA airborne spectrometer data acquired during a spring bloom in the Gulf of Finland, Baltic Sea on April 27, 2004. The accuracy of the estimation is analyzed using empirical band-ratio algorithms together with in situ observations that include water samples analyzed in a laboratory (variation ranges: 22–130 μg/l, 2.9–20 mg/l, and 1.29–2.61 m−1 for chl-a, TSS and aCDOM(400), respectively). Additional in situ estimates (transects) on these characteristics are available through absorption and scattering coefficients measured with an ac-9 absorption and attenuation meter installed in a flow-through system. The retrieval accuracy (R2) of all three water quality characteristics with MERIS data is close to or above 0.9, while the RMSE is 7.8 μg/l (22%), 0.74 mg/l (16%) and 0.08 m−1 (5%), for chl-a, TSS and aCDOM(400), respectively. The validity of the chl-a algorithm is tested using nine additional data points. The BIAS-error for these points is 5.2 μg/l and the RMSE is 10.6 μg/l. The effects of changes in the atmospheric characteristics on band-ratio algorithms in cases where no concurrent in situ reference data are available are analyzed using the MODerate spectral resolution atmospheric TRANSmittance algorithm and computer model (MODTRAN). The additional error due to these changes is estimated to be below 20% for the applied ratio algorithms. The water quality data available in the level 2 MERIS-product distributed by the European Space Agency did not include valid results for the date investigated here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号