首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在前人的工作中,拉格朗日分析法被用来演示大尺度环流,同时拉格朗日拟序结构可以较好的演示中尺度涡两维结构的发展过程。然而,很少研究关注怎么利用拉格朗日分析法针对中尺度涡三维结构进行演示。与以往利用欧拉方法研究中尺度涡三维结构的工作不同,我们利用拉格朗日分析法,从另一个视角来研究涡旋结构。我们在海山上方模拟出一个理想的气旋涡,涡旋内的下沉流和涡旋旁的上升流形成一个闭合的环流。这种结构很难从欧拉角度来演示。然而,粒子的运动轨迹很好地展示了整个循环:流体在涡旋中旋转下沉,汇聚到底层的上升流区,并通过上升流返回到海表面。我们也将拉格朗日分析法应用于真实的模拟结果中。作为中国南海的一个重要现象,靠近越南中部的海域中的偶极子(反气旋涡/气旋涡),关于其结构的研究已经比较成熟了,但这些研究主要关注的是海面过程。通过拉格朗日分析,我们很好的演示了偶极子的三维结构:流体在反气旋涡(气旋涡)内部旋转上升(下沉)。更重要的是,粒子的轨迹表明,这两个涡旋之间不存在水团交换,因为强边界急流将它们彼此分开。以上结论均得到了计算误差估计的可信度支持。尽管在强辐散流和强垂直扩散流中,计算误差逐渐增大,但是在一定的时间步长和积分周期内,计算误差始终保持在一个较小的值。  相似文献   

2.
The established “island rule” and the recently introduced “separation formula” are combined to yield an analytical expression for the total upwelling into the thermocline in the Pacific. The combination of the two is achieved with the use of a hybrid model containing a stratified upper layer, a thick (slowly moving) homogenous intermediate layer and an inert lower layer. Both the upper and the intermediate layers are subject to diabatic cooling and heating (which need not be specified) and there is an exchange of mass between the two active layers. An attempt is made to examine the above analytical (hybrid) model numerically. Ideally, this should be done with a complete two-and-a-half layer model (with upwelling and downwelling), but such a model is much too complex for process-oriented studies (due to the required parameterization of vertical mixing). Consequently, we focus our attention on verifying that the separation formula and the island rule are consistent with each other in a much simpler, layer-and-a-half model (without upwelling). We first verified that the new “separation formula” provides a reasonable estimate of the wind-induced transport in an island-free basin. We then compare the wind-induced transport predicted by the separation formula and the island rule in an idealized basin containing an island. We show that in these idealized situations the two methods give results that are consistent with each other and the numerics. We then turned to an application of the (hybrid) two-and-a-half layer model to the Pacific where, in contrast to the idealized layer-and-a-half models (where the two methods address the same water mass), the two methods address two different water masses. While the separation formula addresses only thermocline water (σθ<26.20), the island rule addresses all the water down to 27.5σθ (i.e., both the upper and intermediate layer). This is why the application of the two methods to the Pacific gives two different results — an application of the formula gives zero warm water transport whereas an application of the island rule gives 16 Sv. Namely, the difference between the amount predicted by the island rule (16 Sv) and the amount predicted by the separation formula (zero) enters the Pacific as intermediate water and is then somehow upwelled into the thermocline. The upwelling should take place north of the southern western boundary currents separation (40°S).  相似文献   

3.
《Ocean Modelling》2011,36(4):277-303
We investigate the influence of bottom topography on the formation and trapping of long upwelling filaments using a 2-layer shallow water model on the f-plane. A wind forced along-shore current, associated with coastal upwelling along a vertical wall, encounters a promontory of finite width and length, perpendicular to the coast.In the lower layer, topographic eddies form, which are shown to drive the formation of a filament on the front. Indeed, as the upwelling current and front develop along the coast, the along shore flow crosses the promontory, re-arranging the potential vorticity structure and generating intense vortical structures: water columns with high potential vorticity initially localized upon the promontory are advected into the deep ocean, forming cyclonic eddies, while water columns from the deep ocean with low potential vorticity climb on the topography forming a trapped anticyclonic circulation. These topographic eddies interact with the upper layer upwelling front and form an elongated, trapped and narrow filament.Sensitivity tests are then carried out and it is shown that:
  • •baroclinic instability of the front does not play a major role on the formation of long trapped filaments;
  • •increasing the duration of the wind forcing increases the upwelling current and limits the offshore growth of the filament;
  • •modifying the promontory characteristics (width, length, height and slopes) has strong impact on the filament evolution, sometimes leading to a multipolarisation of the potential vorticity anomaly structure which results in much more complicated patterns in the upper layer (numerous shorter and less coherent filaments). This shows that only specific promontory shapes can lead to the formation of well defined filaments;
  • •adding bottom friction introduces a slight generation of potential vorticity in the bottom layer over the promontory, but does not significantly alter significantly the formation of the filament along the outcropped front in the present configuration;
  • •modifying the stratification characteristics, in particular the density jump between the layers, has only a weak influence on the dynamics of topographic eddies and on filament formation;
  • •the influence of capes is also modest in our simulations, showing that topography plays the major role in the formation of long and trapped upwelling filaments.
  相似文献   

4.
We have studied the relation between the hydrography, the composition and horizontal structure of the larval fish community, and the horizontal distribution patterns of larval fish abundances in an area characterised by strong mesoscale oceanographic activity, located between the Canary Islands and the African coast (the Canaries Coastal Transition Zone), during August 1999. Upwelling, upwelling filaments, cyclonic and anticyclonic eddies and island wakes are typical mesoscale features of the northwest African coast in summer. A single upwelling filament off Cabo Juby was joined in mid-August by a second that originated about 100 km to the north. The two filaments flowed together and merged 100 km offshore. The merged filament was partially entrained around a cyclonic eddy, trapped between the Canary Islands and the African coast, and interacted with cyclonic and anticyclonic eddies shed from Gran Canaria. Mesoscale oceanographic features strongly influenced the horizontal distributions of fish larvae. Eddies acted as a mechanism of concentration, while upwelling filaments were dispersive, transporting larvae from the African neritic zone into oceanic areas and towards the Canary archipelago. This transport was the major cause of the predominance of neritic larvae in the composition of the larval fish community of the area. The results also suggest: (1) that anchovy larvae are good indicators of the offshore displacement of upwelled water; (2) that the alternation between anchovy and sardine as species dominant in the larval fish community of the area during summer depends upon the water temperature in the African upwelling region, anchovy dominating at higher temperature; (3) that a coupling of anchovy and sardine spawning with the mesoscale oceanographic structure formed by the upwelling filaments and trapped eddy overcomes the negative effect that Ekman transport has on their populations.  相似文献   

5.
基于 sCHIsM 模式建立南海三维流场模式,进行了设置 g 坐标 、sZ 坐标与局地 g 坐标的数值模拟研究。结果表明, 在不加同化条件下, 垂向坐标对南海斜压环流和海温模拟有比较明显的影响, 在越南外海尤为显著, g 坐标和局地 g 坐标能 够较好地模拟出越南外海的涡旋, sZ 坐标对涡旋的模拟效果比较差, 局地 g 坐标对海温的模拟效果最好, 而 g 坐标对海温 的模拟结果最差。总体而言, 局地 g 坐标可以兼顾南海斜压环流和海温模拟的要求。  相似文献   

6.
Mesoscale eddies can distribute nutrients, heat and fresh water into the Gulf of Alaska (GOA) from the coastal margins. While many studies have investigated the physical characteristics of GOA eddies, their effects on passive-dispersive particles have not been previously simulated to investigate eddy induced upwelling. A climatologically forced Parallel Ocean Program simulation of the north Pacific Ocean with an online particle tracking scheme was used to simulate passive-dispersive particles in the Gulf of Alaska. In-eddy vertical Lagrangian velocities of the particles were calculated both inside and outside the eddies and showed upwelling rates are generally greater inside the eddies where the vertical velocities of the particles ranged from 0.2 to 0.7 m/day.  相似文献   

7.
We report, from remote sensing and in situ observations, a new type of permanent structure in the eastern subtropical Atlantic Ocean, that we call the “Canary Eddy Corridor”. The phenomenon, is a zonal long-lived (>3 months) mesoscale eddy corridor, whose source is the flow perturbation of the Canary Current and the Trade Winds at the Canary Islands. The latitudinal range of the corridor spans 22°N–29°N and extends from the Canaries to at least 32ºW, near the mid-Atlantic. This is the main region of long-lived westward-propagating eddies in the subtropical northeast Atlantic. From a age-distribution study we observe that at least 10% of mesoscale eddies in this region are long-lived, with a dominance of anticyclones over cyclones. Another four westward-propagating eddy corridors were also detected: two small corridors north and south of the Azores Front; a small zonal corridor located near 31ºN, south of the island of Madeira; and a small corridor located near the Cape Blanc giant filament. The existence of these corridors may change, at least for the northeastern subtropical Atlantic, the general idea that mesoscale eddies are disorganized, ubiquitous structures in the ocean. The Canary Eddy Corridor constitutes a direct zonal pathway that conveys water mass- and biogeochemical properties offshore from the Canary Island/Northwest Africa upwelling system, and may be seen as a recurrent offshore pump of organic matter and carbon to the oligotrophic ocean interior. Estimates of volume and mass transport indicate that Canary Eddy Corridor westward transport is more than one-fourth of the southward transport of the Canary Current. The westward transport of kinetic energy by the eddies of the Canary Corridor is as important as the southward transport by the Canary Current. The total primary production related to the Corridor may be as high as the total primary production of the northwest Africa upwelling system for the same latitude range.  相似文献   

8.
2006年夏季珠江冲淡水驱动的上升流   总被引:2,自引:1,他引:1  
根据珠江口及其附近海域2006年夏季(7-8月)航次水文调查资料,发现调查期间,除了西南季风驱动下的冲淡水东向扩散外,粤西珠江口外冲淡水主要呈西向扩散趋势,并且西向扩散的冲淡水下存在上升流。已有的模型研究中,西南季风下珠江口外没有出现上升流,说明西南季风不是珠江口外上升流产生的主导因素。观测的温盐分布、潜标流速时间序列与走航ADCP流态表明,上升流产生的原因是:(1)口门外冲淡水南向扩展驱动了垂向重力环流;(2)密度跃层以下东北向沿岸流的底边界层Ekman效应;(3)口门外冲淡水团之间的气旋型中尺度涡旋作用。  相似文献   

9.
The mixing agents and their role in the dynamics of a shallow fjord are elucidated through an Eulerian implementation of artificial tracers in a three-dimensional hydrodynamic model. The time scales of vertical mixing in this shallow estuary are short, and the artificial tracers are utilized in order to reveal information not detectable in the temperature or salinity fields. The fjord's response to external forcing is investigated through a series of model experiments in which we quantify vertical mixing, transport time scales of fresh water runoff and estuarine circulation in relation to external forcing.Using age tracers released at surface and bottom, we quantify the time scales of downward mixing of surface water and upward mixing of bottom water. Wind is shown to be the major agent for vertical mixing at nearly all depth levels in the fjord, whereas the tide or external sea level forcing is a minor agent and only occasionally more important just close to the bottom. The time scale of vertical mixing of surface water to the bottom or ventilation time scale of bottom water is estimated to be in the range 0.7 h to 9.0 days, with an average age of 2.7 days for the year 2004.The fjord receives fresh water from two streams entering the innermost part of the fjord, and the distribution and age of this water are studied using both ageing and conservative tracers. The salinity variations outside this fjord are large, and in contrast to the salinity, the artificial tracers provide a straight forward analysis of river water content. The ageing tracer is used to estimate transport time scales of river water (i.e. the time elapsed since the water left the river mouth). In May 2004, the typical age of river water leaving the fjord mouth is 5 days. As the major vertical mixing agent is wind, it controls the estuarine circulation and export of river water. When the wind stress is set to zero, the vertical mixing is reduced and the vertical salinity stratification is increased, and the river water can be effectively exported out of the fjord.We also analyse the river tracer fields and salinity field in relation to along estuary winds in order to detect signs of wind-induced straining of the along estuary density gradient. We find that events of down estuary winds are primarily associated with a reduced along estuary salinity gradient due to increased surface salinity in the innermost part of the fjord, and with an overall decrease in vertical stratification and river water content at the surface. Thus, our results show no apparent signs of wind-induced straining in this shallow fjord but instead they indicate increased levels of vertical mixing or upwelling during down estuary wind events.  相似文献   

10.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

11.
The transport of nutrient-rich, deep sea water from an artificial upwelling pipe has been simulated. A numerical model has been built within a commercial Computational Fluid Dynamics (CFD) package. The model considers the flow of the deep sea water after it is ejected from the pipe outlet in a negatively buoyant plume (densimetric Froude number = −2.6), within a stably stratified ocean environment subject to strong ocean current cross flow. Two cross-flow profiles were tested with momentum flux ratios equal to 0.92 and 3.7. The standard k-ε turbulence model has been employed and a range of turbulent Schmidt and Prandtl numbers tested. In all cases the results show that the rapid diffusion of heat and salinity at the pipe outlet causes the plume to attain neutral buoyancy very rapidly, preventing strong fountain-like behavior. At the higher momentum flux ratio fountain-like behavior is more pronounced close to the pipe outlet. The strong cross-current makes horizontal advection the dominant transport process downstream. The nutrient plume trajectory remains largely within one relatively thin stratified layer, making any ocean cross-flow profile less important. Very little unsteady behavior was observed. The results show that the nutrient is reduced to less than 2% of its inlet concentration 10 meters downstream of the inlet and this result is largely independent of turbulent Prandtl or Schmidt number. Initial results would suggest that if such an artificial upwelling were to be viable for an ocean farming project, a large number of upwelling pipes would be necessary. Further work will have to determine the minimum nutrient concentration required to sustain a viable phytoplankton population and the required spacing between upwelling pipes.  相似文献   

12.
The transition zone of the Canary Current upwelling region   总被引:2,自引:0,他引:2  
Like all the major upwelling regions, the Canary Current is characterised by intense mesoscale structure in the transition zone between the cool, nutrient-rich waters of the coastal upwelling regime and the warmer, oligotrophic waters of the open ocean. The Canary Island archipelago, which straddles the transition, introduces a second source of variability by perturbing the general southwestward flow of both ocean currents and Trade winds. The combined effects of the flow disturbance and the eddying and meandering of the boundary between upwelled and oceanic waters produce a complex pattern of regional variability. On the basis of historical data and a series of interdisciplinary field studies, the principal features of the region are described. These include a prominent upwelling filament originating near 28°N off the African coast, cyclonic and anti-cyclonic eddies downstream of the archipelago, and warm wake regions protected from the Trade winds by the high volcanic peaks of the islands. The filament is shown to be a recurrent feature, apparently arising from the interaction of a topographically trapped cyclonic eddy with the outer edge of the coastal upwelling zone. Its role in the transport and exchange of biogenic material, including fish larvae, is considered. Strong cyclonic eddies, observed throughout the year, drift slowly southwestward from Gran Canaria. One sampled in late summer was characterised by large vertical isopycnal displacements, apparent surface divergence and strong upwelling, producing a fourfold increase in chlorophyll concentrations over background values. Such intense eddies can be responsible for a major contribution to the vertical flux of nitrogen. The lee region of Gran Canaria is shown to be a location of strong pycnocline deformation resulting from Ekman pumping on the wind shear boundaries, which may contribute to the eddy formation process.  相似文献   

13.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

14.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   

15.
作为中尺度过程与小尺度过程中的过渡,次中尺度过程[空间尺度为O(1~10)km,时间尺度为O(1)天]是海洋动力过程中重要的一环。海洋次中尺度过程具有明显的非地转特征,从而促进垂向热量和物质的输运,因此在海洋上层热量与物质垂直交换中肩负着极为重要的作用。黑潮作为全球最强的西边界流之一,是海洋能量的重要聚集区。针对黑潮流区大尺度环流和中尺度涡旋等动力过程的研究,受到海洋和气象学者的广泛关注,但对黑潮流区次中尺度过程的相关研究相对较少。本文基于高分辨率ROMS数值模式(空间分辨率为1公里),针对黑潮流区(25.5°~29.4°N, 124.4°~131°E)次中尺度过程的空间分布特征及其诱导的热量输运特征进行了研究。模拟结果表明,黑潮流区存在着十分活跃的次中尺度过程,尤其是在黑潮流区及岛屿周边等地形变化剧烈的海区。相对涡度和垂直流速的分布特征表明,次中尺度相对涡度和垂向流速上表现出了明显的不对称性,正相对涡度强于负相对涡度,向下垂向流速强于向上垂向流速,而这主要是由惯性不稳定所导致。通过计算次中尺度引起的热量输运,结果表明次中尺度的水平热量通量为东北方向,从较低纬度朝较高纬度输运,这意味着次中尺度可以促进不同纬度的热量交换;而垂向热量通量则表现出向上输运的特征,即由深层往表层输运,这意味着次中尺度过程可以导致热量在垂直方向上的再分配,从而使得海洋趋于再分层。  相似文献   

16.
Effects of Stokes production on summer ocean shelf dynamics   总被引:1,自引:0,他引:1  
A two-dimensional numerical model,which is configured on the basis of Princeton ocean model(POM),is used to study the effect of Stokes production(SP) of the turbulent kinetic energy on a density profile and Ekman transport in an idealized shelf region in summer.The energy input from SP is parameterized and included into the Mellor-Yamada turbulence closure submodel.Results reveal that the intensity of wind-driven upwelling fronts near the sea surface is weakened by the SP-associated turbulent kinetic energy input.The vertical eddy viscosity coefficient in the surface boundary layer is enhanced greatly owing to the impact of SP,which decreases the alongshore velocity and changes the distribution of upwelling.In addition,the SP-induced mixing easily suppresses the strong stratification and significantly increases the depth of the upper mixed layer(ML) under strong winds.  相似文献   

17.
自黑潮脱落并由吕宋海峡进入中国南海的中尺度涡(简称脱落涡旋)对黑潮与南海的水体交换、热量及物质输送等过程均有十分重要的作用.基于1993—2013年OFES(OGCM for the Earth Simulator)模式数据产品,分析研究了脱落涡旋的统计特征及其温盐流三维结构,并与卫星观测结果进行对比分析.OFES模式...  相似文献   

18.
涡旋对海洋中的能量传递和物质交换有重要作用。黑海西北部陆坡边缘是长生命周期涡旋经常发生的海域,但涡旋引起的陆架和海盆之间水交换通量的季节性特征,以及海盆边缘环流对跨陆架水交换的作用等方面的研究还不是很充分。本文对黑海西北部陆架区与深海盆区间的跨陆架水交换进行了研究,利用高分辨率三维原始方程模式模拟的温、盐、流等资料,结合涡旋自动探测方法,统计了黑海西北部海域的涡旋活动,研究了涡致跨陆架水交换的季节性特征,计算对比了2002年到2010年间海盆边缘环流与涡旋对跨陆架水交换通量的各自贡献。结果表明:黑海西北部地区海盆边缘环流强度与跨陆架进、出通量的相关系数分别为0.57和0.67,海盆边缘环流位置与跨陆架交换量的相关系数为0.52;海盆边缘环流强度与位置的季节性变化导致了黑海西北部跨陆架通量的季节性变化。黑海西北部地区表层3月到8月之间涡旋所引起跨陆架交换量约占了跨陆架交换总量的16%~31%;涡致跨陆架通量也具有季节性特征。文中对单个涡旋进行了详细研究:2005年5月5日到2005年7月20日之间在黑海西北部存在一个直径最大值时达到120 km的反气旋式涡旋,涡旋存在期间完成了从陆架区向深海区的水体传输,相当于黑海西北陆架区水体积的30.9%。  相似文献   

19.
Hydrographic data show that the meridional deep current at 47°N is weak and southward in northeastern North Pacific; the strong northward current expected for an upwelling in a flat-bottom ocean is absent. This may imply that the eastward-rising bottom slope in the Northeast Pacific Basin contributes to the overturning circulation. After analysis of observational data, we examine the bottom-slope effect using models in which deep water enters the lower deep layer, upwells to the upper deep layer, and exits laterally. The analytical model is based on geostrophic hydrostatic balance, Sverdrup relation, and vertical advection–diffusion balance of density, and incorporates a small bottom slope and an eastward-increasing upwelling. Due to the sloping bottom, current in the lower deep layer intensifies bottomward, and the intensification is weaker for larger vertical eddy diffusivity (K V), weaker stratification, and smaller eastward increase in upwelling. Varying the value of K V changes the vertical structure and direction of the current; the current is more barotropic and flows further eastward as K V increases. The eastward current is reproduced with the numerical model that incorporates the realistic bottom-slope gradient and includes boundary currents. The interior current flows eastward primarily, runs up the bottom slope, and produces an upwelling. The eastward current has a realistic volume transport that is similar to the net inflow, unlike the large northward current for a flat bottom. The upwelling water in the upper deep layer flows southward and then westward in the southern region, although it may partly upwell further into the intermediate layer.  相似文献   

20.
Hukuda  H.  Yoon  J. H.  Yamagata  T. 《Journal of Oceanography》1994,50(2):141-163
A three-dimensional primitive -coordinate model is developed to allow for tideland. The model determines the coastline position each time step based on a minimum threshold depth, and extrapolates the three-dimensional predictive variables onto tideland only when the water depth exceeds that threshold value, assuring that the extrapolation is consistent with physics as well as with the numerical scheme involved. The model is applied to an M2 tide in the northern estuary of Ariake Bay characterized by the large tideland. The model successfully simulates flood and ebb tides during which a large area of tideland is covered and uncovered with water due to the large tidal difference in sea level. The model also reproduces a strong salinity front caused by the freshwater runoff from Chikugo river. The general patterns of model-computed tidal flows and density front are consistent with data available in this region. The mean flow field averaged over a twelve hour period shows a strong northward current along the slope accompanied by anticyclonic eddies over tideland, the latter feeding a southward transport along the eastern coast. It is shown that such a circulation pattern is enhanced by the joint effect of baroclinicity and bottom relief. Finally, some implications of model results are discussed in relation to the fishery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号