首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
20世纪80年代以来全球耕地变化的基本特征及空间格局   总被引:3,自引:0,他引:3  
本文基于全球1982-2011年土地利用/覆被的矢量数据,分析了20世纪80年代以来全球耕地变化的基本特征及空间格局。结果表明:① 20世纪80年代以来,全球耕地面积增加了528.768×104 km2,增加速率为7.920×104 km2/a,呈不显著增加趋势,全球耕地面积以20世纪80年代增速最快。20世纪80年代以来,北美洲、南美洲、大洋洲耕地面积呈显著增加趋势,分别增加了170.854×104 km2、107.890×104 km2、186.492×104 km2,增加速率分别为7.236×104 km2/a、2.780×104 km2/a、3.758×104 km2/a;亚洲、欧洲、非洲耕地面积为减少趋势,分别减少了23.769×104 km2、4.035×104 km2、86.76×104 km2,减少速率分别为-5.641×104 km2/a、-0.813×104 km2/a、 -0.595×104 km2/a。② 20世纪80年代以来,全球增加的耕地主要由草地、林地转化,分别占53.536%、26.148%。新增耕地面积主要分布在非洲南部及中部、澳大利亚东部和北部、南美洲东南部、美国的中部及阿拉斯加、加拿大中部、俄罗斯西部及芬兰北部、蒙古北部等区域。非洲南部的博茨瓦纳为全球耕地增加比例最高区域,增加了80%~90%。③ 20世纪80年代以来,全球耕地换化为其他用地共计1071.946×104 km2,全球减少的耕地主要转化为了草地、林地,分别占比为57.482%、36.000%;全球减少耕地主要分布在非洲中部的苏丹南部、美国中南部、俄罗斯南部及欧洲南部的保加利亚、罗马尼亚、塞尔维亚和匈牙利等国,减少最大的区域为非洲南部,减少了60%。④ 各大洲耕地均表现出向高纬扩张的趋势,全球多数国家表现出新增耕地扩张而原有耕地减少的特点。  相似文献   

2.
Cultivated land change in the Belt and Road Initiative region   总被引:3,自引:1,他引:2  
The Belt and Road Initiative (BRI)–a development strategy proposed by China – provides unprecedented opportunities for multi-dimensional communication and cooperation across Asia, Africa and Europe. In this study, we analyse the spatio-temporal changes in cultivated land in the BRI countries (64 in total) to better understand the land use status of China along with its periphery for targeting specific collaboration. We apply FAO statistics and GlobeLand30 (the world’s finest land cover data at a 30-m resolution), and develop three indicator groups (namely quantity, conversion, and utilization degree) for the analysis. The results show that cultivated land area in the BRI region increased 3.73×104 km2 between 2000 and 2010. The increased cultivated land was mainly found in Central and Eastern Europe and Southeast Asia, while the decreased cultivated land was mostly concentrated in China. Russia ranks first with an increase of 1.59×104 km2 cultivated land area, followed by Hungary (0.66×104 km2) and India (0.57×104 km2). China decreased 1.95×104 km2 cultivated land area, followed by Bangladesh (–0.22×104 km2) and Thailand (–0.22×104 km2). Cultivated land was mainly transferred to/from forest, grassland, artificial surfaces and bare land, and transfer types in different regions have different characteristics: while large amount of cultivated land in China was converted to artificial surfaces, considerable forest was converted to cultivated land in Southeast Asia. The increase of multi-cropping index dominated the region except the Central and Eastern Europe, while the increase of fragmentation index was prevailing in the region except for a few South Asian countries. Our results indicate that the negative consequence of cultivated land loss in China might be underestimated by the domestic- focused studies, as none of its close neighbours experienced such obvious cultivated land losses. Nevertheless, the increased cultivated land area in Southeast Asia and the extensive cultivated land use in Ukraine and Russia imply that the regional food production would be greatly improved if China’ “Go Out policy” would help those countries to intensify their cultivated land use.  相似文献   

3.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain (SNP) in the 1910s and 1930s. We then allocated this cropland area to grid cells with a size of 1 km × 1 km, using a range of cultivation possibilities from high to low; this was based on topography and minimum distances to rivers, settlements, and traffic lines. Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China, and map vectorization was performed with ArcGIS technology. Cropland areas for the 1970s, 1980s, 1990s, 2000s, and 2010s were retrieved from Landsat images. We found that the cropland areas were 4.92 × 104 km2 and 7.60 × 104 km2, accounting for 22.8% and 35.2% of the total area of the SNP in the 1910s and 1930s, respectively, which increased to 13.14 × 104 km2, accounting for 60.9% in the 2010s. The cropland increased at a rate of 1.18 × 104 km2 per decade from the 1910s to 1970s while it was merely 0.285 × 104 km2 per decade from the 1970s to 2010s. From the 1910s to 1930s, new cultivation mainly occurred in the central SNP while, from the 1930s to 1970s, it was mainly over the western and northern parts. This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   

4.
江汉平原土地利用的时空变化及其驱动因素分析   总被引:31,自引:4,他引:27  
采用遥感、GIS一体化技术,利用1989~1990、1995~1996和1999~2000年获取的三期陆地资源卫星图像,对江汉平原土地利用10年变化和以1995~1996年为界的前后两个5年变化的时空特征进行了分析,并探讨了变化的驱动因素。结果表明,该区的土地利用在不同的时间及空间尺度上有明显不同的特点。10年间,耕地减少近5万hm2,其中,前5年的减少量占多数,达6783%。各类建设用地总计增加了156万hm2,其中,前5年的增加量是后5年的2倍。水域面积在10年间增加了达到354万hm2,后5年的增幅不到前期的1/2。土地利用变化最快的区域均处于工业经济较发达、城市化较快的地区如武汉、仙桃,变化最慢的区域在监利、松滋、天门等地。政策、社会经济与科技因素对土地利用随时间尺度的变化有决定性的影响。  相似文献   

5.
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×103 km2 while the cropland decreased by 4.9×103 km2, and the total area of woodland and grassland decreased by 16.4×103 km2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12th Five-Year Plan (2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in central and western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.  相似文献   

6.
This study aimed at characterizing land cover dynamics for four decades in Eastern Mau forest and Lake Nakuru basin, Kenya. The specific objectives were to: (i) identify and map the major land cover types in 1973, 1985, 2000 and 2011; (ii) detect and determine the magnitude, rates and nature of the land cover changes that had occurred between these dates, and; (iii) establish the spatial and temporal distribution of these changes. Land cover types were discriminated through partitioning, hybrid classification and spatial reclassification of multi-temporal Landsat imagery. The land cover products were then validated and overlaid in post-classification comparison to detect the changes between 1973 and 2011. The accuracies of the land cover maps for 1973, 1985, 2000 and 2011 were 88%, 95%, 80% and 89% respectively. Six land cover classes, namely forests-shrublands, grasslands, croplands, built-up lands, bare lands and water bodies, were mapped. Forests-shrublands dominated in 1973, 1985 and 2000 covering about 1067 km2, 893 km2 and 797 km2 respectively, but were surpassed by croplands (953 km2) in 2011. Bare lands occupied the least area that varied between 2 km2 and 7 km2 during this period. Overall, forests-shrublands and grasslands decreased by 428 km2 and 258 km2 at the annual average rates of 1% each, whereas croplands and built-up lands expanded by 660 km2 and 24 km2 at the annual rates of 6% and 16% respectively. The key hotspots of these changes were distributed in all directions of the study area, but at different times. Therefore, policies that integrate restoration and conservation of natural ecosystems with enhancement of agricultural productivity are strongly recommended. This will ensure environmental sustainability and socio-economic well-being in the area. Future research needs to assess the impacts of the land cover changes on ecosystem services and to project the future patterns of land cover changes.  相似文献   

7.
Estimates of the physical boundary conditions on sediment source and sink regions and the flux between them provide insights into the evolution of topography and associated sedimentary basins. We present a regional‐scale, Plio‐Quaternary to recent sediment budget analysis of the Grande, Parapeti and Pilcomayo drainages of the central Andean fold‐thrust belt and related deposits in the Chaco foreland of southern Bolivia (18–23°S). We constrain source‐sink dimensions, fluxes and their errors with topographic maps, satellite imagery, a hydrologically conditioned digital elevation model, reconstructions of the San Juan del Oro (SJDO) erosion surface, foreland sediment isopachs and estimated denudation rates. Modern drainages range from 7453 to 86 798 km2 for a total source area of 153 632 km2. Palaeo‐drainage areas range from 9336 to 52 620 km2 and total 100 706 km2, suggesting basin source area growth of ~50% since ~10 Ma. About 2.4–3.1 × 104 km3 were excavated from below the SJDO surface since ~3 Ma. The modern foredeep is 132 080 km2 with fluvial megafan areas and volumes ranging from 6142 to 22 511 km2 and from 1511 to 3332 km3, respectively. Since Emborozú Formation deposition beginning 2.1 ± 0.2 Ma, the foreland has a fill of ~6.4 × 104 km3. The volume and rate of deposition require that at least ~40–60% of additional sediment be supplied beyond that incised from below the SJDO. The data also place a lower limit of ≥0.2 mm year?1 (perhaps ≥0.4 mm year?1) on the time‐ and space‐averaged source area denudation rate since ~2–3 Ma. These rates are within the median range measured for the Neogene, but are up to 2 orders of magnitude higher than some observations, as well as analytic solutions for basin topography and stratigraphy using a two‐dimensional mathematical model of foreland basin evolution. Source‐to‐sink sediment budget analyses and associated interpretations must explicitly and quantitatively reconcile all available area, volume and rate observations because of their inherent imprecision and the potential for magnification when they are convolved.  相似文献   

8.
基于遥感和GIS的中国20世纪90年代毁林开荒状况分析   总被引:10,自引:0,他引:10  
毁林开荒过程是一种林地变为耕地的土地利用变化过程,可以通过遥感和GIS技术对这一过程进行监测。本文通过覆盖全国的TM影像数据,对20世纪90年代林地转为耕地的面积及其空间分布进行分析,从而对全国毁林开荒过程进行遥感监测。结果表明,该时期有17630km2的林地被开垦为耕地。不同面积等级的开垦过程在不同流域分布也不同:面积小于10hm2和介于10~100hm2的被开垦林地较广泛地分布于各大流域;而面积介于100~1000hm2的被开垦林地主要分布于松辽流域、黑龙江流域和东北东部流域、长江流域、珠江流域和云南省所在流域;大于1000hm2的被开垦林地则几乎全部分布于松辽流域、黑龙江流域和东北东部流域。坡度大于3°的毁林开荒地面积占总面积的295%;对土壤侵蚀背景的分析表明,土壤侵蚀强度以微度和轻度为主  相似文献   

9.
Song  Yanchen  Wang  Enze  Peng  Yuting  Xing  Haoting  Wu  Kunyu  Zheng  Yongxian  Zhang  Jing  Zhang  Na 《Natural Resources Research》2021,30(6):4355-4377

The Paleogene upper Xiaganchaigou Formation (E32) is the most important source rock and reservoir in the Qaidam Basin. However, there are few studies on the processes of hydrocarbon accumulation in this formation; therefore, its hydrocarbon resource potential has not been estimated reasonably. This paper evaluates the hydrocarbon generation properties in light of an improved hydrocarbon generation and expulsion potential model. According to the geochemical characteristics of source rocks and the petrological features of reservoirs, the potentials of different resource types, including conventional oil, tight oil and shale oil, are quantified by combining the buoyancy-driven hydrocarbon accumulation depth (BHAD) and the lower limit for movable resource abundance. The results show that the source rocks are characterized by a large thickness (more than 1000 m), moderate organic matter content, high marginal maturity and a high conversion rate (50% hydrocarbons have been discharged before Ro?=?1%), which provide sufficient oil sources for reservoir formation. Moreover, the reservoirs in the Qaidam Basin consist mainly of low-porosity and low-permeability tight carbonates (porosity of 4.7% and permeability less than 1 mD). The maximum hydrocarbon generation, expulsion, retention and movable retention intensities at present are 350?×?104 t/km2, 250?×?104 t/km2, 130?×?104 t/km2 and 125?×?104 t/km2, respectively. The thresholds of hydrocarbon generation, expulsion and BHAD were 0.46% Ro, 0.67% Ro and 0.7% Ro, respectively. Moreover, the dynamic evolution process of hydrocarbon accumulation was divided into three evolution stages, namely, (a) initial hydrocarbon accumulation, (b) conventional hydrocarbon reservoir and shale oil accumulation and (c) unconventional tight oil accumulation. The conventional oil, tight oil and movable shale oil resource potentials were 10.44?×?108 t, 51.9?×?108 t and 390?×?108 t, respectively. This study demonstrates the good resource prospects of E32 in the Qaidam Basin. A comprehensive workflow for unconventional petroleum resource potential evaluation is provided, and it has certain reference significance for other petroliferous basins, especially those in the early unconventional hydrocarbon exploration stage.

  相似文献   

10.
Sandy desertification in the Shule River Basin has expanded dramatically during the past 30 years. We evaluated the status, evolution, and main causes of sandy desertification by interpreting Landsat images which were acquired in 1978, 1990, 2000, 2005, and 2010, and analyzing the relevant meteorological data. The results show there was 3,477.95 km2, 3,733.32 km2, 3,620.29 km2, 3,565.65 km2, and 3,557.88 km2 of sandy desertified land in 1978, 1990, 2000, 2005, and 2010, respectively. From 1978 to 1990, not only the area of sandy desertified land (SDL) but also the degree of SDL levels increased. From 1990 to 2010 there was widespread restoration of SDL but the recovery trend of SDL gradually slowed. Although climate change contributes to expanding sandy desertification, human activities can either accelerate or reverse trends of natural sandy desertification. Some detrimental human activities can accelerate sandy desertification, but, conversely, desertification control measures such as the Three-North Shelter Forest Project and watershed rehabilitation programs in areas including the Shule River Basin resulted in many SDL being turned into grasslands or forest lands when shrubs and trees were planted to fix mobile sands at the edges of oases and cities. With population growth, much SDL has been reclaimed as farm land using water-saving agricultural methods or has been turned into built-up land as a result of urbanization.  相似文献   

11.
Using Landsat TM data, this article examines the environmental impact of the East Port Said harbour project on the surrounding landscape. The optimum three-band combination and the most appropriate multispectral bands were selected to enhance the images and monitor land cover changes for the periods of 1984–1991 and 1991–2003. The results indicate that wetland areas declined from 103 km2 in 1984 to 30 km2 in 2003. In addition, the surface area of El-Malha Lake has shrunk from 27 km2 to 18 km2 over the same period. In contrast, the area covered by salt crust has increased from 11 km2 in 1984 to 19 km2 in 2003. Urban land use and designed cultivated lands were also significant in 2003, covering 49 km2 and 71 km2, respectively. The rate of shoreline change between 1984 and 2003, the period when the East Port Said harbour was constructed, was calculated. Vector data indicate that the rate of shoreline loss was ?13 m/year from 1984 to 1991 and ?15 m/year from 1991 to 2003. Despite the fact that construction of the East Port Said harbour caused significant changes in the study area, there are several factors controlling coastline and land cover changes including industrial development and fish cultivation farms.  相似文献   

12.
结合近40 a水文气象资料,基于水热平衡原理,构建模型,分析和讨论了20世纪70、80、90年代以及2000年以来塔里木河下游绿洲适宜规模与耕地面积,并结合相应不同时期的遥感影像,对各时期实际绿洲规模进行了比较。结果表明:近40 a来,塔里木河下游绿洲适宜规模和耕地规模趋于收缩,但2000年以后有所扩大;20世纪80年代的绿洲耕地面积与计算得出的适宜耕地规模基本平衡,之后严重超出绿洲承载能力,2009年超出幅度达1.22×104 hm2;耕地面积过大已导致塔里木河下游绿洲进入了不稳定状态,当前应采取措施适度缩小绿洲规模,并及时有效地控制耕地面积。  相似文献   

13.
In order to advance land use and land cover change (LUCC) research in Nepal, it is essential to reconstruct both the spatiotemporal distribution of agricultural land cover as well as scenarios that can explain these changes at the national and regional levels. Because of rapid population growth, the status of agricultural land in Nepal has changed markedly over the last 100 years. Historical data is used in this study, encompassing soils, populations, climatic variables, and topography. Data were revised to a series of 30 m grid cells utilized for agricultural land suitability and allocation models and were analyzed using a suite of advanced geographical tools. Our reconstructions for the spatiotemporal distribution of agricultural land in Nepal reveal an increasing trend between 1910 and 2010 (from 151.2 × 102 km2 to 438.8 × 102 km2). This expanded rate of increase in agricultural land has varied between different eco, physiographic, and altitudinal regions of the country, significantly driven by population changes and policies over the period of this investigation. The historical dataset presented in this paper fills an existing gap in studies of agricultural land change and can be applied to other carbon cycle and climate modeling studies, as well as to impact assessments of agricultural land change in Nepal.  相似文献   

14.
黑河流域土地利用变化对地下水资源的影响   总被引:1,自引:0,他引:1  
Land use and land cover changes have a great impact on the regional hydrological process. Based on three periods of remote sensing data from the 1960s and the long-term observed data of groundwater from the 1980s, the impacts of land use changes on the groundwater system in the middle reach of Heihe River Basin in recent three decades are analyzed by the perspective of groundwater recharge and discharge system. The results indicate that with the different intensities of land use changes, the impacts on the groundwater recharge were 2.602 × 10^8 m^3/a in the former 15 years (1969-1985) and 0.218 × 10^8 m^3/a in the latter 15 years (1986-2000), and the impacts on the groundwater discharge were 2.035 × 10^8 m^3/a and 4.91 × 10^8 m^3/a respectively. When the groundwater exploitation was in a reasonable range less than 3.0 × 10^8 m^3/a, the land use changes could control the changes of regional groundwater resources. Influenced by the land use changes and the large-scale exploitation in the recent decade, the groundwater resources present apparently regional differences in Zhangye region. Realizing the impact of land use changes on groundwater system and the characteristics of spatial-temporal variations of regional groundwater resources would be very important for reasonably utilizing and managing water and soil resources.  相似文献   

15.
Unplanned urban growth, particularly in developing countries has led to changes in land use/land cover (LULC). Numerous Indian cities face problems of unplanned LULC change due to nominal or non-existent planning efforts compounded by rapid urban population growth. The Guwahati Metropolitan Area (GMA) is one such urban centre. The present study assesses the trajectories of LULC change using Landsat imageries acquired in 1976, 1989, 2002 and 2015. Natural and semi natural vegetated area and artificial and natural water bodies decreased while built-up areas, cultivated and managed areas, and natural and semi natural non-vegetated areas increased. The built-up area increased from 23.9 in 1976 to 115.1 km2 in 2015 becoming the dominant land cover class accounting for 41.8% of the total geographical area. During this period, natural and semi natural vegetated land were reduced by 88.9 km2 at an annual rate of 2.2 km2. Over the years there was an increasing trend of built-up land and cultivated and managed areas in the peripheral areas of the city while natural and semi natural vegetated land diminished. Consequently, as in many other developing countries, there is an urgent need for the governmental authorities and other stakeholders to implement effective urban planning policies.  相似文献   

16.
Rubber plantation is the major land use type in Southeast Asia. Monitoring the spa- tial-temporal pattern of rubber plantation is significant for regional land resource development, eco-environmental protection, and maintaining border security. With remote sensing tech- nologies, we analyzed the rubber distribution pattern and spatial-temporal dynamic; with GIS and a newly proposed index of Planted Intensity (PI), we further quantified the impacts and limits of topographical factors on rubber plantation in the border region of China, Laos and Myanmar (BRCLM) between 1980 and 2010. The results showed that: (1) As the dominant land use type in this border region, the acreage of rubber plantation was 6014 km2 in 2010, accounting for 8.17% of the total area. Viewing from the rubber plantation structure, the ratio of mature- (〉10 year) and young rubber plantation (〈 10 year) was 5:7. (2) From 1980 to 2010, rubber plantation expanded significantly in BRCLM, from 705 km2 to 6014 km2, nearly nine times. The distribution characteristics of rubber plantation varied from concentrated toward dispersed, from border inside to outside, and expanded further in all directions with Jinghong City as the center. (3) Restricted by the topographical factors, more than 4/5 proportion of rubber plantation concentrated in the appropriate elevation gradients between 600 and 1000 m, rarely occurred in elevations beyond 1200 m in BRCLM. Nearly 2/3 of rubber plantation concentrated on slopes of 8~-25~, rarely distributed on slopes above 35~. Rubber plantation was primarily distributed in south and east aspects, relatively few in north and west aspects. Rubber planted intensity displayed the similar distribution trend. (4) Comparative studies of rubber plantation in different countries showed that there was a remarkable increase in area at higher elevations and steeper slopes in China, while there were large appropriate topog- raphical gradients for rubber plantation in Laos and Myanmar which benefited China for rubber trans-boundary expansion. (5) Rubber plantation in BRCLM will definitely expend cross borders of China to the territories of Laos and Myanmar, and the continuous expansion in the border region of China will be inevitable.  相似文献   

17.
There exists great potential of rural land consolidation in China due to the aggravated hollowed villages against the background of rapid rural-urban transformation. The paper aims to investigate the potential of rural land consolidation within four urbanization scenarios: Complete urbanization, Semi-urbanization, Urbanization in batches and prospective urbanization in 2020. Research findings show that, (1) the potentials of rural land consolidation in complete and semi-urbanization are 809.89×104 hm2 and 699.19×104 hm2 respectively while rural consolidation rates are 50.70% and 43.77%. As for the urbanization in batches and urbanization in 2020, the potentials are 757.89×104 hm2 and 992.16×104 hm2. (2) Beside Tibet and Ningxia, rural consolidation rates in most provinces are between 40% and 60%, and the land increase rates are between 3% and 12%. Significant correlation between potential of rural land consolidation and the degree of hollowed villages is also found. (3) Evident differences of potential of rural land consolidation exist across provinces. Rural consolidation rates in the East and Central provinces are higher than that in the West provinces. Villages in the developed areas have higher consolidation rates than those in the less developed areas, and villages in the plain areas tend to have higher consolidation rates than those in the mountainous areas.  相似文献   

18.
1990—2010年黄河宁蒙段所处流域土地利用变化   总被引:1,自引:0,他引:1  
以Landsat TM和ETM+遥感影像为基础数据源,应用地理信息系统技术,对黄河宁蒙段所处流域1990-2010年土地利用变化进行了监测,并结合气候变化、人类活动和政策因素探讨了土地利用变化的驱动力,初步分析了土地利用/覆被变化对流域水-沙关系的影响。结果表明:(1)20年来研究区建设用地面积增加了1 310.04 km2,耕地面积增加了611.15 km2,水域和草地面积分别减少了1 499.51 km2和474.93 km2;(2)20年来黄河宁蒙段所处流域土地利用变化速度经历了缓慢变化-显著变化-急剧变化的过程。各土地利用类型在后10 年(2000-2010年)的变化速度均比前10年(1990-2000年)大;(3)研究时段内草地和未利用地转化为林地,草地和耕地被开发为建设用地,未利用地和草地被开垦为耕地;(4)人类活动和政策因素是影响20年来土地利用变化的主要驱动因子,但人口数量的增加、经济的发展及环境政策的调整对研究区土地利用变化的影响更为显著;(5)1990-2010年流域耕地和林地面积分别增加了611.15 km2和543.19 km2,植被覆盖度由1990年的34.7%增加到2010年的40.8%。林地和耕地面积的增加均使得流域总蒸发量增加,灌溉用水增加,从而径流量减少,植被覆盖度的增加使得流域径流量和输沙量均降低。  相似文献   

19.
基于GIS 的中国人居环境指数模型的建立与应用   总被引:39,自引:5,他引:34  
封志明  唐焰  杨艳昭  张丹 《地理学报》2008,63(12):1327-1336
以1km×1km 栅格为基本单元, 选取地形、气候、水文、植被等自然因子, 构建了基 于人居环境指数的中国人居环境自然适宜性评价模型, 运用GIS 技术, 定量评价了中国不同 地区的人居环境自然适宜性, 揭示了中国人居环境的自然格局与地域特征。研究表明: 中国 人居环境指数整体呈现由东南沿海向西北内陆递减的趋势; 人居环境指数与人口密度显著相 关, 二者的对数曲线拟合度R2 值高达0.87, 人居环境指数可以综合反映区域人居环境的自然 适宜程度。中国人居环境自然适宜性评价结果显示, 中国人居环境适宜地区430.47×104 km2 , 接近国土面积的45%, 相应人口占全国的96.56%, 其中3/4 以上的人口集聚在约占1/4 人居 环境高度适宜和比较适宜地区; 中国人居环境临界适宜地区225.11×104 km2 , 占国土面积的 23.45%, 相应人口4112 万, 占全国的3.24%, 人口密度每平方公里18 人, 是中国人居环境 适宜与否的过渡地区; 中国人居环境不适宜地区304.42×104 km2, 人口249 万, 不到全国的 0.2%, 人口密度每平方公里不足1 人, 大片地区沦为“无人区”。  相似文献   

20.
中国北方沙漠化土地时空演变分析   总被引:117,自引:57,他引:60  
对2000年中国北方256×104 km2区域内沙漠化土地的遥感监测结果表明:沙漠化土地总面积现已达到38.57×104 km2,其中轻度和潜在沙漠化土地13.93×104 km2,占沙漠化土地面积的36.1%;中度沙漠化土地9.977×104 km2,占25.9%;重度沙漠化土地7.909×104 km2,占20.5%;严重沙漠化土地面积6.756×104 km2,占17.5%。与20世纪50年代后期到70年代中期和80年代后期的沙漠化土地发展状况相比,目前我国沙漠化土地演变趋势具以下特征:(1)沙漠化土地仍在蔓延,面积已由1987年的33.895×104 km2增加到了2000年的38.569×104 km2,13a中净增4.674×104 km2;(2)沙漠化土地继续呈加速发展的趋势,年平均发展速率从20世纪50年代后期到70年代中期的1560 km2、70年代中期到80年代后期的2100 km2发展到90年代的3600 km2;(3)部分旱农区以及农牧交错地区沙漠化土地出现明显逆转,但荒漠草原地区沙漠化土地面积继续扩大,并且程度有所加剧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号