首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用模型试验和数值模拟研究了不同水深工况下半潮堤前的反射形态及时均流速场。基于Hilbert变换建立了叠合波的时频分离技术,同时获取了入射波和反射波的波面过程及相位关系,通过试验数据证明其适用于不同反射程度的波浪信号分析。不同水深工况下,半潮堤前形成了部分立波系统,腹点和节点分别以四分之一波长的偶数倍和奇数倍交替增加。半潮堤前底床水质点水平速度包络图与波面包络图相差四分之一周期的相位,水平速度的极大值和极小值分别出现在波面包络图的节点和腹点,意味着节点处易形成冲刷,腹点处易形成淤积。3种工况的周期平均速度场均在迎浪基床上方的堤脚处存在一个小型环流系统,可能引起局部冲刷,此处需加强防护。淹没工况下,半潮堤前的周期平均速度场形成一个大型环流系统,表层水流向堤后,中下层水流向海侧,意味着底床悬起的泥沙很可能向离岸方向流失。  相似文献   

2.
灾害性波浪是中国沿海地区最具破坏性的自然灾害之一。采用开源程序OpenFOAM中interFoam求解器,对低顶海堤(在风暴潮和海平面上升情况下所面临的不利工况)的孤立波越浪特性开展数值模拟研究。通过孤立波冲击海堤的基准算例,验证模型在模拟波浪爬升和越浪过程中大变形波面以及剧烈波浪力方面的精度。基于验证的数值模型,对孤立波在低顶海堤上的越浪特征以及防浪墙高度对越浪的影响开展参数化研究。结果表明堤顶超高减小导致更为剧烈的越浪。针对尚无低顶海堤孤立波越浪量经验公式的问题,提出新的适用于堤顶超高小或为0的孤立波越浪量经验公式。此外,研究发现增加防浪墙高度可有效减少越浪,但防浪墙所受的波浪力也增大。综合考虑防浪墙减少越浪以及自身所受波浪力,针对文中研究采用的海堤截面和波浪条件,建议无量纲防浪墙高度取为1.00。  相似文献   

3.
In this study,we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall.Modified time-dependent mild-slope equations,which involve parameters of the porous medium,were used to calculate the wave height transformation and the mean water level change around a submerged breakwater.The numerical solution is verified with experimental data.The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall.In contrast to cases without a seawall,the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall.Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater.We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

4.
In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

5.
针对海工作业平台、海洋养殖网箱等海洋装备的安全防护问题,提出了一种带空气透平的后弯管浮式防波堤,该空气透平既可将作用在防波堤上的波浪能转化成机械能并用于发电,还可显著减小防波堤的锚链力。在介绍了防波堤原理和结构特点的基础上,设计了物理实验模型,并在实验室造波池内进行了模型试验,研究了波浪周期、波高、吃水深度与弯管数量等因素对后弯管浮式防波堤透射系数和锚链力的影响规律。研究结果表明,波浪周期越短,波高越低,防波堤的透射系数越小,锚 链力越小,其消波性能优于传统的浮式防波堤.  相似文献   

6.
7.
The paper presents a series of analytical and numerical investigations of oblique wave transmission at low-crested breakwaters. For a smooth breakwater, two important features of wave height and direction are analyzed to establish the generic nature of the wave transmission process at oblique incidence. The proposed framework of research is validated against laboratory data from the EU-sponsored project, DELOS. The numerical simulations exhibit a significant decrease of the transmission coefficient with increasingly oblique incidence at a smooth breakwater. The roles of wave-breaking, nonlinearity, wave-induced currents and set-up in determining the characteristics of oblique wave transmission are demonstrated in the paper. It is found that both the amplitude-dependent phase velocity and the decrease of mean wave period contribute to the change of mean wave direction on the transmission side. An attempt has also been made to qualitatively explain the different behaviour of oblique wave transmission at a rubble-mound breakwater.  相似文献   

8.
To improve the current understanding of the reduction of tsunami-like solitary wave runup by the pile breakwater on a sloping beach, we developed a 3D numerical wave tank based on the CFD tool OpenFOAM in this study. The Navier Stokes equations were applied to solve the two-phase incompressible flow, combined with an LES model to solve the turbulence and a VOF method to capture the free surface. The adopted model was firstly validated with existing empirical formulas for solitary wave runup on the slope without the pile structure. It is then validated using our new laboratory observations of the free surface elevation, the velocity and the pressure around a row of vertical slotted piles subjected to solitary waves, as well as the wave runup on the slope behind the piles. Subsequently, a set of numerical simulations were implemented to analyze the wave reflection, the wave transmission, and the shoreline runup with various offshore wave heights, offshore water depths, adjacent pile spaces and beach slopes. Finally, an improved empirical equation accounting for the maximum wave runup on the slope was proposed by taking the presence of the pile breakwater into consideration.  相似文献   

9.
This is a theoretical study of a breakwater-seawall wave-trapping system. The breakwater, being flexible, porous and thin beam-like, is held fixed in the sea bed and idealized as one-dimensional beam of uniform flexural rigidity and uniform mass per unit length. The seawall, being vertical, rigid and impermeable, is located behind the breakwater by a distance of L. The velocity potentials of the wave motion are coupled with the equation of motion of the breakwater. Analytical solutions in closed forms are obtained for the reflected and transmitted velocity potentials together with the displacement of the breakwater. The free-surface elevation, hydrodynamic forces acting on both the breakwater and the seawall are determined. It is found that the values of L, at which the minimum reflected-wave amplitudes reach, are in the range of λ to λ for breakwaters with different rigidity and permeability. It is shown that, when the spacing L maintains values in the range of λ to λ, the resultant amplitudes in both regions can be reduced to a favorable amount for any wave and structural parameters. It is also shown that the hydrodynamic forces on the breakwater decrease as the structural flexibility and porosity increase. However, with increases of the structural porosity and flexibility, the seawall experiences an increase of the hydrodynamic forces. Various results are presented in this paper to illustrate the effects of the structural and perous parameters together with the spacing on the response and efficiency of the breakwater-seawall wave-trapping system.  相似文献   

10.
波浪溢流现象使得海堤受到了越浪和溢流的联合作用,复杂的水动力过程会引起海堤后坡产生严重的侵蚀破坏。基于FLUENT软件建立了二维数值波浪溢流水槽模型,该模型运用UDF速度边界造波法分析在不同超高条件下海堤后坡流量和水流厚度的水力学特性。结果表明数值模拟结果与前人物理模型试验结果吻合,该模型可以真实地模拟出海堤波浪溢流现象。在此基础上进一步研究了波浪溢流中越浪和溢流在不同相对超高条件下的主导性作用,而后建立了十分准确的波浪溢流海堤后坡稳定水流厚度计算公式。  相似文献   

11.
柔性水囊潜堤由橡胶制成,内部充水,具有结构简单、造价低廉等优点,能较好满足人工岛、跨海桥梁、海洋平台等基础设施建设工程对简单便携、拆装方便的临时防波堤的需求。为了探究柔性水囊潜堤的消波特性,在溃坝水槽内开展溃坝波与半圆柱形柔性水囊潜堤相互作用的试验研究,重点探究柔性水囊潜堤与溃坝波相互作用过程中水位变化特性,并与半圆柱刚性潜堤的性能进行比较;同时分析柔性水囊潜堤内部初始水压和浸没深度等参数对其消波性能的影响。结果表明:柔性水囊潜堤能够用作临时防波堤来衰减波浪;与半圆柱刚性潜堤相比,柔性水囊潜堤在降低溃坝波无量纲最大水位、提高消波性能方面更具优势;内部初始水压是影响柔性水囊潜堤消波性能的重要因素,适当降低内部初始水压,有利于增强柔性潜堤的变形程度,进而增加波能耗散,可获得更好的消波效果;而增加浸没深度即潜深,会使得柔性水囊潜堤对溃坝波的影响程度降低,消波效果减弱。  相似文献   

12.
The empirical bay shape model proposed by Hsu and Evans in 1989 for predicting the static planform of a pocket beach is expanded to enable the calculation of three-dimensional beach changes on a pocket beach with a seawall. The original formulation was developed on the basis of a second-order regression analysis. Unlike the one-line model of shoreline changes, the model of Hsu and Evans does not require repeated calculations of the wave field and shoreline position, because it was derived on the assumption of null sediment movement within a pocket beach in static equilibrium, hence without the need of applying the continuity condition of total sand volume in the calculation. The expanded model proposed by the present authors satisfies the total sand budget on a pocket beach, by taking into account the concept of depth change due to longshore sand transport. Model tests were carried out and the new model was further applied to the beach changes at Kemigawa on the northeast of Tokyo Bay in Chiba Prefecture, as well as at Oarai in Ibaraki Prefecture, Japan. On both locations, seawall has been installed as countermeasures against beach erosion, where wave sheltering effect of the main breakwater and beach changes in front of the seawall has also been observed. With this expansion, the present model can be applied to predict the three-dimensional beach changes on a coast with seawall on a pocket beach.  相似文献   

13.
This paper introduces the main points of design and operation features of a curved combinative breakwater wall which can not only resist storm surge but also roll wave back and which has the functions of seawall, tide protection, anti-wave, land development, traffic and tourism. The new kind of breakwater optimized by wave model test has been utilized in the seawall in the coast regulation project in Zhanjiang City, and good results have been achieved.  相似文献   

14.
The basic purpose of any breakwater is to protect a harbor, moored vessels or an offshore structure from excessive incident wave attack. Breakwater can be classified as either fixed structures or floating ones. The vertical membrane floating breakwater which will be introduced in this paper belongs to the latter.  相似文献   

15.
新型开孔工字板组合式防波堤波浪力特性试验研究   总被引:1,自引:1,他引:0  
开孔工字板组合式防波堤是基于透空板式防波堤的一种新型结构形式,具有自重轻、材料省的特点。为充分了解新型开孔组合式防波堤的受力特性,基于室内水槽物理模型试验,测量新型开孔工字板组合式防波堤上的波压力与结构总力,研究相对波高H/d、相对波长L/B对该新型防波堤结构表面压力的影响,讨论了该新型防波堤所受波浪力荷载与相对波高H/d、相对波长L/B的关系。结果表明,相对波高H/d是决定新型防波堤结构表面波压力和结构总力的主要影响因素。该新型防波堤结构波浪力荷载以垂直方向受力为主,新型防波堤结构所受竖向总力远大于水平总力,最大可达到15倍。新型防波堤水平总力随相对波长L/B先增大后趋于稳定。相对波长L/B=3.617是防波堤结构水平总力变化幅度的分界点。  相似文献   

16.
圆弧面防波堤波浪力初步研究   总被引:8,自引:1,他引:7  
圆弧面防波堤是在半圆形防波堤基础上开发的一种新型防波堤。首先通过与半圆形防波堤相同条件下的波浪试验,检验圆弧面防波堤的稳定性,并利用数值波浪水槽对圆弧面防波堤的水力特性进行初步研究,探求造成圆弧面防波堤与半圆形防波堤波浪力差别的主要原因。通过圆弧面防波堤与半圆形防波堤波浪力的对比试验,提出了圆弧面防波堤波浪力的简化计算方法,以半圆堤正向水平波浪力乘以一修正系数,在堤顶淹没情况下修正系数可取1.3,在堤顶出水情况下修正系数可取1.1。  相似文献   

17.
《Coastal Engineering》2004,51(10):991-1020
This paper describes the capability of a numerical model named COrnell BReaking waves And Structures (COBRAS) [Lin, P., Liu, P.L.-F., 1998. A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics 359, 239–264; Liu, P.L.-F., Lin, P., Chang, K.A., Sakakiyama, T., 1999. Numerical modeling of wave interaction with porous structures. Journal of Waterway, Port, Coastal and Ocean Engineering 125, 322–330, Liu, P.L.-F., Lin, P., Hsu, T., Chang, K., Losada, I.J., Vidal, C., Sakakiyama, T., 2000. A Reynolds averaged Navier–Stokes equation model for nonlinear water wave and structure interactions. Proc. Coastal Structures '99, 169–174] based on the Reynolds Averaged Navier–Stokes (RANS) equations to simulate the most relevant hydrodynamic near-field processes that take place in the interaction between waves and low-crested breakwaters. The model considers wave reflection, transmission, overtopping and breaking due to transient nonlinear waves including turbulence in the fluid domain and in the permeable regions for any kind of geometry and number of layers. Small-scale laboratory tests were conducted in order to validate the model, with different wave conditions and breakwater configurations. In the present study, regular waves of different heights and periods impinging on a wide-crested structure are considered. Three different water depths were tested in order to examine the influence of the structure freeboard. The experimental set-up includes a flow recirculation system aimed at preventing water piling-up at the lee of the breakwater due to overtopping. The applicability and validity of the model are examined by comparing the results of the numerical computations with experimental data. The model is proved to simulate with a high degree of agreement all the studied magnitudes, free surface displacement, pressure inside the porous structure and velocity field. The results obtained show that this model represents a substantial improvement in the numerical modelling of low-crested structures (LCS) since it includes many processes neglected previously by existing models. The information provided by the model can be useful to analyse structure functionality, structure stability, scour and many other hydrodynamic processes of interest.  相似文献   

18.
In the present study, wave interaction with a fixed, partially immersed breakwater of box type with a plate attached (impermeable-permeable) at the front part of the structure is investigated numerically and experimentally. The large scale laboratory experiments on the interaction of regular waves with the special breakwater were conducted in the wave flume of Laboratori d’Enginyeria Marνtima (LIM) at Universitat Politecnica de Catalunya (UPC) in Barcelona. Experimental results are compared with numerical results obtained with the use of the Cornell breaking Wave and Structures (COBRAS) wave model. The effects of an impermeable as well as a permeable plate attached to the bottom of the breakwater on its hydrodynamic characteristics (wave transmission, reflection, dissipation, velocity and turbulence kinetic energy) are investigated. Computed velocities and turbulence kinetic energy in the vicinity of the structure indicate the effects of the breakwater with the attached (impermeable/permeable) plate on the flow pattern and the turbulence structure. The attached impermeable plate at the front part of the breakwater enhances significantly the efficiency of the structure in attenuating the incident waves. The permeable plate reduces the efficiency of the structure since wave energy is transmitted through the porous body of the plate. Based on the hydrodynamic characteristics it is inferred that the breakwater with an impermeable plate attached to its bottom is more efficient. The comparison of horizontal and vertical forces acting on the breakwater for all cases examined reveals that plate porosity influences slightly vertical force and severely horizontal force acting on the structure, reducing maximum values in both cases.  相似文献   

19.
《Coastal Engineering》2006,53(5-6):395-417
This paper is the second part of the work presented by Garcia et al. [Garcia, N., Lara, J.L., Losada, I.J., 2004. 2-D numerical analysis of near-field flow at low-crested breakwaters. Coastal Engineering 51 (10), 991–1020]. In the mentioned paper, flow conditions at low-crested rubble-mound breakwaters under regular wave attack were examined, using a combination of measured data of free surface, bottom pressure and fluid velocities from small-scale experiments and numerical results provided by a VOF-type model (COBRAS) based on the Reynolds-Averaged Navier–Stokes (RANS) equations. This paper demonstrates the capability of the COBRAS model to reproduce irregular wave interaction with submerged permeable breakwaters. Data provided by the numerical model are compared to experimental data of laboratory tests, and the main processes of wave–structure interaction are examined using both experimental and numerical results. The numerical model validation is carried out in two steps. First, the procedure of irregular wave generation is verified to work properly, comparing experimental and numerical data of different cases of irregular wave trains propagating over a flat bottom. Next, the validation of the numerical model for wave interaction with submerged rubble-mound breakwaters is performed through the simulation of small-scale laboratory tests on different incident wave spectra. Results show that the numerical model adequately reproduces the main aspects of the interaction of random waves with submerged porous breakwaters, especially the spectral energy decay at the structure and the spectrum broadening past the structure. The simulations give good results in terms of height envelopes, mean level, spectral shape, root-mean-square height for both free surface displacement and dynamic pressure inside the breakwater. Moreover, large-scale simulations have been conducted, on both regular and irregular incident wave conditions. The overall pattern of the wave interaction with a large-scale submerged breakwater is adequately reproduced by the numerical model. The processes of wave reflection, shoaling and breaking are correctly captured. The good results achieved at a near prototype scale are promising regarding the use of the numerical model for design purposes.  相似文献   

20.
The aim of this paper is to develop an offshore breakwater, for which coefficients of both the wave reflection and transmission have low values. The breakwater is suggested to compose of n layers of porous materials with different porosities. A complex eigen function method is used in the theoretical analysis. Continuities of both mass flux and fluid pressure are assumed at interfaces between every two adjoining porous materials and at the interface between end materials and water region. Following a series of mathematical processes, the coefficients of the wave transmission and reflection along with the wave energy loss are calculated. The porosity of materials is varied in computations; and results are compared among structures composing of different layers of porous materials. A single layer offshore breakwater is shown to reduce simultaneously the coefficients of transmission and reflection only when the structure is very wide in the direction of wave propagation, and the structure material has a high porosity. A multilayer breakwater, however, can function well in reducing both coefficients at a much narrower width; structure having more layers can be more effective at narrower width. Finally, several experiments are conducted; theoretical computations and experimental results agree well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号