首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peak Ground Acceleration (PGA) is a very important ground motion parameter which is used to define the degree of ground shaking during an earthquake. It is also very helpful for designing earthquake resistant structure. The PGA can be estimated by attenuation relationships using magnitude, distance, source type etc of a ground motion. In the past, several researchers have developed over 450 attenuation relationships for predicting PGA for a specific region. In the present study an attempt has been made to develop an attenuation relationship on the basis of these available previous relationships in rock site which will be applicable for any region of the world. In the present study, PGA has been expressed as a function of moment magnitude and hypo-central distance in rock site. Chi-square test have also been performed with available earthquake data in American and Indian region for verifying the accuracy of the generated attenuation relationship. Using multiple regression and Genetic Algorithm (GA) the attenuation relationship equations have also been generated. These equations will be very helpful for performing seismic hazard analysis and predicting earthquake force in any region of the world.  相似文献   

2.
This paper presents an attenuation relationship of peak ground acceleration (PGA) derived from Turkish strong motion data for rock, soil and soft soil sites and an iso-acceleration map of Turkey based on this relationship. For the purpose, among all the three-component accessible records, 221 records from 122 earthquakes that occurred in Turkey between 1976 and November 2003 were selected. The database was compiled for earthquakes with moment magnitudes (Mw) and PGA values ranging between 4.1 and 7.5, and 20 and 806 gal, and distances to epicenter considered in the database were between 5 and 100 km. From the regression analysis of the data, an attenuation equation of PGA considering rock, soil and soft soil conditions was developed. The PGA values predicted from the equation suggested in this study and those both from a few domestic equations and some imported equations were compared. In addition, an iso-acceleration map of Turkey was constructed using the suggested attenuation equation and considering both known active faults and epicenter locations of the earthquakes that have occurred in Turkey.  相似文献   

3.
A new model is derived to predict the peak ground acceleration(PGA) utilizing a hybrid method coupling artificial neural network(ANN) and simulated annealing(SA), called SA-ANN. The proposed model relates PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity,faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes,which happened in Iran's tectonic regions, is used to establish the model. For more validity verification,the SA-ANN model is employed to predict the PGA of a part of the database beyond the training data domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known models proposed in the literature. The proposed model performance is superior to the single ANN and other existing attenuation models. The SA-ANN model is highly correlated to the actual records(R=0.835 and r =0.0908) and it is subsequently converted into a tractable design equation.  相似文献   

4.
Using the recorded earthquake strong ground motion, the attenuation of peak ground acceleration (PGA) and peak ground velocity (PGV) are derived in the southern Dead Sea Transform region. The expected values of strong motion parameters from future earthquakes are estimated from attenuation equations, which are determined by regression analysis on real accelerograms. In this study, the method of Joyner and Boor [Bull Seismol Soc Am 71(6):2011–2038, 1981] was selected to produce the attenuation model for the southern Dead Sea Transform region. The dataset for PGA consists of 57 recordings from 30 earthquakes and for PGV 26 recordings from 19 earthquakes. The attenuation relations developed in this study are proposed as replacement for former probabilistic relations that have been used for a variety of earthquake engineering applications. The comparison between the derived PGA relations from this study with the former relations clearly shows significant lower values than the other relations.  相似文献   

5.
Recent and paleo seismicity indicate that moderate seismic activity is relatively large for Aswan area. This is a warning on the possibility of occurrence of earthquakes in the future too. No strong motion records are available in Aswan area for engineers to rely upon. Consequently, the seismological modeling is an alternative approach till sufficient instrumental records around Aswan become available. In the present study, we have developed new ground motion attenuation relationship for events spanning 4.0?? M w?≤?7.0 and distance to the surface projection of the fault up to 100 km for Aswan based on a statistically simulated seismological model. We generated suites of ground motion time histories using stochastic technique. The ground motion attenuation relation describes the dependence of the strength of the ground motions on the earthquake magnitude and distance from the earthquake. The proposed equation for peak ground acceleration (PGA) for the bed rock is in the form of: $ {\mathbf{log}}{\text{ }}\left( {{\mathbf{PGA}}/{\mathbf{gal}}} \right){\text{ }} = {\mathbf{1}}.{\mathbf{24}} + {\mathbf{0}}.{\mathbf{358}}{M_{\mathbf{w}}} - {\text{ }}{\mathbf{log}}\left( {\mathbf{R}} \right){\text{ }}-{\text{ }}{\mathbf{0}}.{\mathbf{008}}{\text{ }}{\mathbf{R}}{\text{ }} + {\text{ }}{\mathbf{0}}.{\mathbf{22}}{\text{ }}{\mathbf{P}} $ . Where PGA is the peak ground acceleration in gal (cm/s2); Mw, its moment magnitude; R is the closest distance between the rupture projection and the site of interest; and the factor P is a dummy variable. It is observed that attenuation of strong motion in Aswan is correlated with those used before in Egypt.  相似文献   

6.
The Kutch region of Gujarat in India is the locale of one of the most devastating earthquake of magnitude (M w) 7.7, which occurred on January 26, 2001. Though, the region is considered as seismically active region, very few strong motion records are available in this region. First part of this paper uses available data of strong motion earthquakes recorded in this region between 2006 and 2008 years to prepare attenuation relation. The developed attenuation relation is further used to prepare synthetic strong motion records of large magnitude earthquakes using semiempirical simulation technique. Semiempirical simulation technique uses attenuation relation to simulate strong ground motion records of any target earthquake. The database of peak ground acceleration obtained from simulated records is used together with database of peak ground acceleration obtained from observed record to develop following hybrid attenuation model of wide applicability in the Kutch region: $$ \begin{aligned} \ln \left( {\text{PGA}} \right) & = - 2.56 + 1.17 \, M_{\text{w}} - \, 0.015R - 0.0001\ln \left( {E + 15} \right) \\ &\quad 3.0 \le M_{\text{w}} \le 8.2;\quad 12 \le R \le 120;\quad {\text{std}} . {\text{ dev}}.(\sigma ): \pm 0.5 \\ \end{aligned} $$ ln ( PGA ) = ? 2.56 + 1.17 M w ? 0.015 R ? 0.0001 ln ( E + 15 ) 3.0 ≤ M w ≤ 8.2 ; 12 ≤ R ≤ 120 ; std . dev . ( σ ) : ± 0.5 In the above equation, PGA is maximum horizontal ground acceleration in gal, M w is moment magnitude of earthquake, R is hypocentral distance, and E is epicentral distance in km. The standard deviation of residual of error in this relation is 0.5. This relation is compared with other available relations in this region, and it is seen that developed relation gives minimum root mean square error in comparison with observed and calculated peak ground acceleration from same data set. The applicability of developed relation is further checked by testing it with the observed peak ground acceleration from earthquakes of magnitude (M w), 3.6, 4.0, 4.4, and 7.7, respectively, which are not included in the database used for regression analysis. The comparison demonstrates the efficacy of developed hybrid attenuation model for calculating peak ground acceleration values in the Kutch region.  相似文献   

7.
Indian peninsular shield, which was once considered to be seismically stable, is experiencing many earthquakes recently. As part of the national level microzonation programme, Department of Science and Technology, Govt. of India has initiated microzonation of greater Bangalore region. The seismic hazard analysis of Bangalore region is carried out as part of this project. The paper presents the determination of maximum credible earthquake (MCE) and generation of synthetic acceleration time history plot for the Bangalore region. MCE has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore city. The seismotectonic map has been prepared by considering the faults, lineaments, shear zones in the area and historic earthquake events of more than 150 events. Shortest distance from the Bangalore to the different sources is measured and then peak ground acceleration (PGA) is calculated for the different source and moment magnitude. Maximum credible earthquake found in terms of moment magnitude is 5.1 with PGA value of 0.146 g at city centre with assuming the hypo central distance of 15.88 km from the focal point. Also, correlations for the fault length with historic earthquake in terms of moment magnitude, yields (taking the rupture fault length as 5% of the total fault length) a PGA value of 0.159 g. Acceleration time history (ground motion) and a response acceleration spectrum for the corresponding magnitude has been generated using synthetic earthquake model considering the regional seismotectonic parameters. The maximum spectral acceleration obtained is 0.332 g for predominant period of 0.06 s. The PGA value and synthetic earthquake ground motion data from the identified vulnerable source using seismotectonic map will be useful for the PGA mapping and microzonation of the area.  相似文献   

8.
This study presents new attenuation models for the estimation of peak ground acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD) using a hybrid method coupling genetic programming and simulated annealing, called GP/SA. The PGA, PGV, and PGD were formulated in terms of earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms. A worldwide database of strong ground motions released by Pacific Earthquake Engineering Research Center (PEER) was employed to establish the models. A traditional genetic programming analysis was performed to benchmark the proposed models. For more validity verification, the GP/SA models were employed to predict the ground-motion parameters of the Iranian plateau earthquakes. Sensitivity and parametric analyses were carried out and discussed. The results show that the GP/SA attenuation models can offer precise and efficient solutions for the prediction of estimates of the peak time-domain characteristics of strong ground motions. The performance of the proposed models is better than or comparable with the attenuation relationships found in the literature.  相似文献   

9.
在缺乏强震地面运动观测资料的上海地区用烈度资料建立该区的地震烈度和峰值加速度衰减关系,采用一种新方法——比例系数法计算其标准偏差,并通过实例验证这一关系。最后对该区未来百年内可能遭遇的最大地震烈度进行预测  相似文献   

10.
“5.12”汶川大地震和“4.20”芦山地震均触发了大量的崩塌、滑坡。实震资料显示,不同地震烈度区地震触发崩塌滑坡规模的整体分布规律会发生变化。这一统计层面的认知亟待得到物理试验的验证。在自组织临界状态理论的概念框架下,开展了振动台砂堆模型试验。试验表明:输入地震波峰值加速度(PGA)为0.075g~0.125g时,落砂量与发生频率的关系可用幂律描述;PGA增加到0.15g~0.25g时,该关系服从对数正态分布;PGA增加到0.35g~0.45g时,该关系具有正态分布特征。元胞自动机模拟试验结果表明,随扰动强度增加,砂堆模型的动力学特性也经历了幂律-幂律弱化-正态分布的演变过程。按照物理学中的普适性原理,汶川、芦山地震Ⅸ度区崩塌滑坡规模与出现频率之间所呈现负幂律分布的现象,以及汶川地震Ⅺ度区所呈现的对数正态分布,可能是具有普适性意义的规律。这些认识可望为不同烈度区地震触发崩塌滑坡灾势预测提供科学依据。  相似文献   

11.
A probabilistic estimate of seismic hazard can be obtained from the spatial distribution, of earthquake sources, their frequency–magnitude distribution and the rate of attenuation of strong ground motion with distance. We calculate the earthquake perceptibility, i.e. the annual probability that a particular level of ground shaking will be generated by earthquakes of particular magnitude, by weighting frequency–magnitude data with the predicted felt area for a given level of ground shaking at a particular magnitude. This provides an earthquake selection criterion that can be used in the anti-seismic design of non-critical structures. We calculate the perceptibility, at a particular value of isoseismal intensity, peak ground acceleration and velocity, as a function of source magnitude and frequency for the broad Aegean area using local attenuation laws. We use frequency–magnitude distributions that were previously obtained by combining short-term catalogue data with tectonic moment rate data for 14 tectonic zones in Greece with sufficient earthquake data, and where contemporary strain rates are available from satellite data. Many of the zones show a ‘characteristic earthquake’ distribution with the most perceptible earthquake equal to the maximum magnitude earthquake, but a relatively flat perceptibility between magnitudes 6 and 7. The maximum perceptible magnitude is in the fastest-deforming region in the middle of the Aegean sea, and tends to be systematically low on the west in comparison to the east of the Aegean sea. The tectonic data strongly constrain the long-term recurrence rates and lead to low error estimates (±0.2) in the most perceptible magnitudes.  相似文献   

12.
Yin  Deyu  Dong  Yun  Liu  Qifang  Chen  Yadong  She  Yuexin 《Natural Hazards》2020,104(1):397-412

A new strategy for inversion of high-frequency wave radiation condition on the fault plan is exhibited. One-dimensional source model of large earthquake was divided into subfaults, each subfault contains a series of subsources to express high-frequency wave radiation. Envelope of large earthquakes can be expressed as a root-mean-squared with combination of envelope attenuation relationship from all subsources. The envelope attenuation relationship is considered as the empirical Green’s function. Distribution of subsources is estimated by envelope inversion. According to this method, the high-frequency (>?1 Hz) wave radiation areas of 2008 Wenchuan earthquake are generally inverted by the differential evolution using acceleration data from 27 near-field stations, while acceleration waveforms of the Lushan earthquake from 43 near-field stations were utilized to create attenuation envelope. High-frequency waves radiated in: (1) surface rupture areas, including Yingxiu and Beichuan areas; (2) close to the boundaries of asperities near Yingxiu, Yuejiashan, Beichuan and Nanba areas; (3) within 30 km length near the fault northeastern tip; (4) around Qingchuan area.

  相似文献   

13.
Seaquake is a phenomenon where there are water disturbance at the sea, caused by earthquake or submarine eruption. The scope of this study focuses on tsunami simulation due to Manila Trench and Sulu Trench seaquake which is prone to harm Malaysia offshore areas. Manila Trench is a highly potential earthquake source that can generate tsunami in South China Sea. Meanwhile, Sulu Trench could be a threat to east of Sabah offshore areas. In this study, TUNA-M2 model was utilized to perform tsunami simulation at South China Sea and Sulu Sea. TUNA-M2 model applied Okada source model to create tsunami generation due to earthquake. It utilized linear shallow water equation during tsunami propagation with its radiant boundary condition. Five simulations performed at each study region. Forecast points at South China Sea areas were divided into three separate locations which are at the Peninsular Malaysia, west of Sabah and Sarawak offshore areas. Forecast points at Sulu Sea were focused at the east of Sabah offshore areas. This paper will present the simulation results of tsunami wave height and arrival time at various forecast points. The findings of this study show that the range of tsunami wave height at Sulu Sea is higher than that of South China Sea. The tsunami arrival time at Sulu Sea is less than South China Sea. It can be concluded that Sulu Sea poses worse tsunami threat than South China Sea to the Malaysian offshore areas.  相似文献   

14.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

15.
尹得余  刘启方 《地球科学》2016,41(10):1781-1793
合理地估计汶川破坏区域的地震动有助于地震灾害的研究.通过利用芦山地震记录建立的加速度包络衰减关系和汶川地震近场30个台站的加速度包络,基于线源模型,采用差分进化方法反演了汶川地震断层面上高频 (>1 Hz) 辐射区域分布.结果表明:断层面上高频辐射分布很不均匀,辐射较强的区域主要位于:(1) 产生较大地表破裂的映秀、北川和南坝区域;(2) 映秀和北川等凹凸体的周边区域,包括震中东北侧60~90 km区域、北川和南坝东北侧30 km处;(3) 断层破裂停止的东北端约30 km长的区域.其中,破裂贯穿到地表的映秀、北川和南坝是低频和高频辐射都很强的区域.对于无观测记录场点,选择其临近且场地条件类似的台站加速度提取平稳随机过程,结合高频辐射分布和衰减关系得到的包络,合成了加速度时程,可为汶川地震结构震害分析提供地震动输入.   相似文献   

16.
In highway projects, the common destruction effects of earthquake faults include the sand seismic liquefaction, the instability and failure of slopes. Thereinto, the dynamic instability of slopes induced by earthquake faults is most commonly seen. In order to research the influences of the destruction effects of earthquake faults on the dynamic stability of highway slopes, the distribution of previous earthquakes happening in the research area is qualitatively analyzed to establish the earthquake fault model and explore the kinematic characteristics. On this basis, representative slopes–cutting slopes in seismic damage areas are selected to calculate their earthquake response using the ABAQUS finite element program. The displacement field and acceleration output from the program are used to analyze the variation in the displacement of slope top and calculate the distribution coefficient of acceleration. Then, the stress fields output by the dynamic finite element analysis (FEA) are substituted in the genetic algorithm programmed by MATLAB to obtain the time history curves of safety factor of slopes and intelligently search the critical slip surfaces. By doing so, the changing rule of safety factor with seismic acceleration is obtained, together with the range of the safety factor of the envelope diagram of critical slip surfaces.  相似文献   

17.
夏坤  董林  蒲小武  李璐 《岩土力学》2020,41(1):295-304
2008年汶川Ms8.0级强烈地震对远离震中的黄土塬地区造成了较为严重的破坏,局部场地的震害和地震动放大效应显著。以典型黄土塬场地为对象,应用地形台阵流动观测和有限元计算方法,系统开展强震动作用下黄土塬边坡场地动力响应特征研究;应用大型振动台模拟试验和数值计算方法,重点探讨黄土塬平台场地在汶川地震作用下地表加速度响应随覆盖层厚度、地震动强度的变化规律以及对建筑结构的潜在影响。结果表明:黄土塬边坡顶部存在低频但较高放大系数的现象,可能与斜坡高差与入射波波长之比密切相关;大角度(60°~70°)黄土塬边坡对地震动的放大效应十分显著,坡顶加速度峰值(PGA)放大可达2倍,反应谱卓越周期放大可达5倍;较厚黄土塬平台场地加速度放大可达2倍以上,地震烈度增加1度,对于场地上固有周期0.7~2.0 s和周期大于3.0 s的建筑物地震反应将显著增加。  相似文献   

18.
A Probabilistic method is used to evaluate the seismic hazard of nineteen embankment dam sites in Jordan. A line source model developed by McGuire (1978) is used in this study. An updated earthquake catalogue covering the period from 1 A.D. to 1991 A.D. is used for this purpose. This catalogue includes all earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes 27.0°–35.5° N and longitudes 32.0°–39.0° E.Nine distinct seismic sources of potential seismic activities are identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values are higher for dam sites closer to the Dead Sea Fault. This fault is believed to be responsible for most earthquake activities in Jordan and vicinity. The highest PGA value is found to be for Al-Karama dam site.  相似文献   

19.
Probabilistic seismic hazard analysis for Bangalore   总被引:5,自引:3,他引:2  
This article presents the results of probabilistic seismic hazard analysis (PSHA) for Bangalore, South India. Analyses have been carried out considering the seismotectonic parameters of the region covering a radius of 350 km keeping Bangalore as the center. Seismic hazard parameter ‘b’ has been evaluated considering the available earthquake data using (1) Gutenberg–Richter (G–R) relationship and (2) Kijko and Sellevoll (1989, 1992) method utilizing extreme and complete catalogs. The ‘b’ parameter was estimated to be 0.62 to 0.98 from G–R relation and 0.87 ± 0.03 from Kijko and Sellevoll method. The results obtained are a little higher than the ‘b’ values published earlier for southern India. Further, probabilistic seismic hazard analysis for Bangalore region has been carried out considering six seismogenic sources. From the analysis, mean annual rate of exceedance and cumulative probability hazard curve for peak ground acceleration (PGA) and spectral acceleration (Sa) have been generated. The quantified hazard values in terms of the rock level peak ground acceleration (PGA) are mapped for 10% probability of exceedance in 50 years on a grid size of 0.5 km × 0.5 km. In addition, Uniform Hazard Response Spectrum (UHRS) at rock level is also developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) value of 0.121 g obtained from the present investigation is slightly lower (but comparable) than the PGA values obtained from the deterministic seismic hazard analysis (DSHA) for the same area. However, the PGA value obtained in the current investigation is higher than PGA values reported in the global seismic hazard assessment program (GSHAP) maps of Bhatia et al. (1999) for the shield area.  相似文献   

20.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号