首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
岩石中稀土元素的配分可作为地壳、地幔演化的标志,尤其是元素Eu,就是地质时代和物质来源的指示剂。因此,岩石中痕量稀土元素的测定越来越引起地质工作者的关注。  相似文献   

2.
目前许多地质科学工作者认为地球的原始物质成分与球粒陨石相似。由此可利用地质样品中稀土元素的含量与配分关系解决一系列重大地质问题,如地质年龄、矿物岩石成因,岩浆演化、物质来源等等。我们的报告旨在满足以上理论对稀土元素测  相似文献   

3.
ppb级稀土元素分量等离子光谱测定的研究   总被引:1,自引:0,他引:1  
目前许多地质科学工作者认为地球的原始物质成分与球粒陨石相似。由此可利用地质样品中稀土元素的含量与配分关系解决一系列重大地质问题,如地质年龄、矿物岩石成因,岩浆演化、物质来源等等。我们的报告旨在满足以上理论对稀土元素测定的要求。为此,我们拟定一个检出限低、准确度好,能同时测定全部稀土元素的分析方法。  相似文献   

4.
栗木矿田花岗岩的稀土分布模式   总被引:2,自引:0,他引:2  
研究地质体中稀土元素(REE)的组成特征,对于区分岩石类型,探讨岩石的成因、成矿物质来源、成岩成矿条件乃至地球、月球的形成与演化等问题具有重要意义。近年来,国内一些单位结合我国具体地质实际,应用稀土元素的地球化学特点,在解决成岩成矿问题等方面取得了一定的成果。本文通过栗木矿田花岗岩中稀土元素分布研究,为岩体型锡钽铌矿床的成因、找矿以及花岗岩成因类型讨论提供一个侧面的佐证。  相似文献   

5.
满发胜 《矿床地质》1985,4(1):47-53
近年来,人们利用岩石中稀土元素(REE)分布模式,在区分岩石类型、探讨岩石的成因、物质来源及演化历史等问题上积累了许多资料。作者对我国华南地区几个与钨矿有成因联系的花岗岩类岩体进行了系统的稀土元素分析;并根据所获得的稀土模式特征,结合野外地质观察和同位素地质研究成果,对其岩石类型、成因及物质来源等问题进行了讨论。其目的在于为该类型钨矿的找矿和成因理论研究提供佐证。  相似文献   

6.
利用稀土元素的地球化学特征探讨岩石的成因,研究陨石、月球和地球的形成及演化,判断成矿的物理化学条件,得到了较好的效果。因此准确地测定各个稀土元素在岩石中的含量,研究它们的配分比例,在地质研究工作中是一个很重要的研究方法。  相似文献   

7.
稀土元素演化特征及应用   总被引:4,自引:0,他引:4  
任耀武 《河南地质》1998,16(4):303-308
利用稀土元素演化特征来探讨岩石、矿物甚至矿床成因,是地质科研及找矿工作的一个有效手段。参阅有关资料及笔者实际体会,探讨了稀土元素在地质科研及找矿工作中的应用概况。  相似文献   

8.
最突出的例子是,一种表示稀土元素地球化学特征直角坐标图的图名.该图的横坐标为稀土元素,按其原子序数从小到大等距离地自左而右排列,纵坐标的标目是“岩石稀土元素含量/球粒陨石稀土元素含量”,标值是对数值.据《地质学报》、《地球化学》、《矿物岩石》等期刊,  相似文献   

9.
微波密闭消解-等离子体质谱法测定岩石样品中的稀土元素   总被引:31,自引:14,他引:17  
马英军  刘丛强 《岩矿测试》1999,18(3):189-192
建立了有微波密封HF+HNO3消解样品,等离子体质谱测定岩石样品中15个稀土元素的分方法。用该方法对国内外岩石标准品进行测定,结果表明稀土元素的测定值与标准值之间的相对偏差小于5%,检出限为(0.1-0.9)*10^-9,多次测定结果的相对标准偏差在1.3%-5.2%。各类实际岩石样品中稀土元素的分析结果均与地质规律相符,进一步证明了方法的可靠性。  相似文献   

10.
稀土元素地球化学是一门新成长起来的学科。近几年来,国际上不仅有许多关于稀土元素地球化学的专门论述发表,而且在许多研究岩石成因、前寒武纪地质、地壳演化、天体化学、海洋化学、年代学方面的论述也多引用稀土元素地球化学证据。因正,Haskin(1984)在评价稀土元素地球化学的发展时写道:“目前,稀土元素地球化学已成为地球化学研究中  相似文献   

11.
岩石中痕量稀土元素的含量与配分,是研究岩石成因、形成条件、演化过程以及岩石分类的重要依据,因此要求以痕量级的精密度和准确性来测定稀土元素,用常规方法测定稀土元素是不能满足这个要求的,然而电感耦合等离子体发射光谱法却是目前测定痕量稀土元素中的一种比较理想的手段。我们在原工作的基础上,改用小型离子交换柱,仪器采用法国Jobin Yvon公司的Jy38型单道扫描光电直读光谱仪,经选用  相似文献   

12.
The determination of twelve rare-earth elements (REE), scandium, yttrium and hafnium in 32 geochemical reference materials by inductively coupled plasma atomic emission spectrometry (ICP-AES) is reported. Results obtained show good agreement with previously published values and compilations. The method is based on a lithium metaborate fusion of the sample followed by a cation exchange separation. A small amount of oxalic acid added to the 6N HNO3 eluant ensures the complete elution of hafnium with the other 14 elements.  相似文献   

13.
A method has been developed for the rapid chemical separation and highly reproducible analysis of the rare earth elements (REE) by isotope dilution analysis by means of a multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS). This technique is superior in terms of the analytical reproducibility or rapidity of analysis compared with quadrupole ICP-MS or with thermal ionization mass spectrometric isotope dilution techniques. Samples are digested by standard hydrofluoric-nitric acid-based techniques and spiked with two mixed spikes. The bulk REE are separated from the sample on a cation exchange column, collecting the middle-heavy and light REE as two groups, which provides a middle-heavy REE cut with sufficient separation of the light from the heavier REE to render oxide interferences trivial, and a Ba-free light REE cut. The heavy (Er-Lu), middle (Eu-Gd), and light REE (La-Eu) concentrations are determined by three short (1 to 2 min) analyses with a CETAC Aridus desolvating nebulizer introduction system. Replicate digestions of international rock standards demonstrate that concentrations can be reproduced to <1%, which reflects weighing errors during digestion and aliquotting as inter-REE ratios reproduce to ≤0.2% (2 SD). Eu and Ce anomalies reproduce to <0.15%. In addition to determining the concentrations of polyisotopic REE by isotope dilution analysis, the concentration of monoisotopic Pr can be measured during the light REE isotope dilution run, by reference to Pr/Ce and Pr/Nd ratios measured in a REE standard solution. Pr concentrations determined in this way reproduce to <1%, and Pr/REE ratios reproduce to <0.4%. Ce anomalies calculated with La and Pr also reproduce to <0.15% (2 SD). The precise Ce (and Eu) anomaly measurements should allow greater use of these features in studying the recycling of materials with these anomalies into the mantle, or redox-induced effects on the REE during recycling and dehydration of oceanic lithosphere, partial melting, metamorphism, alteration, or sedimentation processes. Moreover, this technique consumes very small amounts (subnanograms) of the REE and will allow precise REE determinations to be made on much smaller samples than hitherto possible.  相似文献   

14.
This study reports precise and accurate data for rare earth elements (REE) measured on eight geological reference materials, five enriched in REE (BE‐N, BHVO‐2, BR, BR‐24 and RGM‐1) and three very depleted in REE (BIR‐1, UB‐N and DTS‐2). Data were acquired by quadrupole ICP‐MS after isolation of the REE using an ion‐exchange chromatography procedure. All the measured REE abundances were similar within ≈ 5% (10% for the most REE‐depleted sample DTS‐2) to the high‐quality measurements previously published in the literature. We also show that by using an internal Tm spike, the reproducibility of the data was improved to ~ 1%. Applying this technique to the analysis of ultra‐depleted rock samples (sub ng g?1), we show that significant improvements were obtained relative to the routine trace element measurement method. The chondrite‐normalised patterns were smooth instead of displaying irregularities. Although the classical method gives excellent results on REE‐rich samples, we believe that our technique improves the precision and accuracy of measurements for highly REE‐depleted rocks.  相似文献   

15.
A new digestion procedure and chemical separation technique has been developed for measurement of Lu/Hf and Hf isotope ratios that does not require high‐pressure bombs or use of HF or HClO4 acids. Samples are digested in dilute HCl or HNO3 after flux‐fusion at 110 0 °C in the presence of lithium metaborate. High field strength elements (HFSE) and rare earth elements (REE) are separated from this solution by co‐precipitation with iron hydroxide. The dissolved precipitate (in 2 mol l?1 HCl) is loaded directly onto a standard cation exchange column which separates remaining sample matrix from the heavy REE (Lu+Yb), and the middle‐light REE and HFSE (Hf). The middle‐light REE and individual HFSE are then separated (10.5, 9 and 6 mol l?1 HCl) using a miniaturized column containing TEVA spec resin which provides a REE‐, Ti‐ and Zr‐free Hf cut. This chemical separation scheme can also be readily adapted for isotopic analysis of the Sm‐Nd system and/or the other HFSE (Ti, Zr). Total procedural blanks for this technique are < 10 0 pg and < 2 pg for Hf and Lu, respectively, even when digesting large (0.5 g) samples. We present data from replicate digestions of international rock reference materials which demonstrate this technique routinely reproduces Lu/Hf ratios to < 0.2% (2s) and 176 Hf/177 Hf isotope ratios to < 30 ppm (2s). Moreover, the technique is matrix‐independent and has been successfully applied to analysis of diverse materials including basalts, meteorites, komatiites, kimberlites and carbonatites. The relative simplicity of this technique, coupled with the ease of digestion (and sample‐spike equilibration) of large difficult‐to‐dissolve samples, and the speed (2 days) with which samples can be digested and processed through the chemical separation scheme makes it an attractive new method for preparing samples for Lu‐Hf isotopic investigation.  相似文献   

16.
张拔川  李功伯 《现代地质》1997,11(3):354-357
对裂隙岩体的爆破破碎阻力特性进行了研究,提出了裂隙岩体爆破阻力矢量的概念和研究方法。以单元结构体作为主要研究对象,建立了爆破阻力矢量与岩体实际阻力矢量的关系模型。作为一种研究方法,它对裂隙岩体的爆破破碎的理论研究及施工技术的研究具有一定的实际意义。  相似文献   

17.
利用多接收电感耦合等离子体质谱仪测定Mg同位素比值时,样品溶液中的基质元素可影响Mg同位素比值的准确测定。根据白云鄂博样品富含REE、Nb、Fe(REE质量分数可达10%、Nb质量分数可达0.1%)等元素的特性,本研究在评估测试溶液中Nd(REE)、Mn元素质量比对Mg同位素比值影响的基础上,建立了适用于富含REE、Nb、Fe等元素的特殊样品中Mg同位素的化学纯化方法。研究表明,当m(Nd)/m(Mg)>0.2、m(Mn)/m(Mg)>0.2时,REE和Mn的存在明显影响Mg同位素测定值的准确性,应予以去除。所建纯化方法首先是利用AG MP-1阴离子交换树脂,以10 mol/L HCl+0.001% H2O2溶液为上样介质和淋洗液,接取前2.5 mL淋洗液,去除样品中 Fe、Mn等杂质元素;然后利用AG50W-X12阳离子交换树脂,以2 mol/L HCl为上样介质和淋洗液,去除REE、Nb等杂质元素。所建方法满足多接收器等离子体质谱进行高REE-Nb-Fe-Mn样品中Mg同位素测定的要求。  相似文献   

18.
AG MP-1阴离子交换树脂元素分离方法再研究   总被引:2,自引:0,他引:2  
目前不同实验室建立的用于MC-ICP-MS铜铁锌同位素测定的离子交换分离方法多适用于一般地质样品的Fe同位素高精度测定,而对于一些类似于白云鄂博Fe-Nb-REE矿床的特殊地质样品,这些分离方法的适用情况有待进一步研究。为研究REE、Nb、Ta、Co、Cu、W等元素是否能够和Fe有效分离,采用AG MP-1阴离子交换树脂,依次以6 mol/L HCl和2 mol/L HCl为介质对这些元素进行淋洗,并利用ICP-AES和ICP MS对淋洗液中的各元素含量进行测定。实验结果表明,在6 mol/L HCl介质条件下,运用AG MP-1树脂可以将REE、W与Fe有效地分离,能够将Nb、Ta的含量降低一个数量级;Fe、Co、Cu的淋洗行为和前人研究结果一致。  相似文献   

19.
Winter seasonal concentrations of dissolved rare earth elements (REE) of two major river systems (the Wujiang River system and the Yuanjiang River system) in karst-dominated regions in winter were measured by using a method involving solvent extraction and back-extraction and subsequent ICP-MS measurements. The dissolved REE concentrations in the rivers and their tributaries are lower than those in most of the large rivers in the world. High pH and high cation (i.e., Na+ + Ca2+) concentrations of the rivers are the most important factors controlling the concentrations of dissolved REE in the river water. The dissolved load (<0.22 μm) REE distribution patterns of high-pH river waters are very different from those of low-pH river waters. The shale (PAAS)-normalized REE patterns for the dissolved loads are characterized by light REE-enrichment and heavy REE-enrichment. Water in the upper reaches of the Wujiang River generally shows light REE-enriched patterns, while that in the middle and lower reaches generally shows heavy REE-enriched patterns. The Yuanjiang River is heavy REE enriched with respect to the light REE in the same samples. Water of the Wuyanghe River draining dolomite-dominated terrains has the highest heavy REE-enrichment. Most river water samples show the shale-normalized REE patterns with negative Ce and Eu anomalies, especially water from Wuyanghe River. Y/Ho ratios show that the water/particle interaction might have played an important role in fractionation between HREE and LREE.  相似文献   

20.
The chondrite-normalized rare earth element (REE) patterns of whole rock samples from evolved granitic systems hosting rare metal deposits sometimes show a split into four consecutive curved segments, referred to as tetrads. In the present contribution, a rigorous statistical method is proposed that can be used to test whether geological significance should be attributed to tetrads that are only of limited size. The method involves a detailed evaluation of element and sample specific random and systematic errors that are constrained on the basis of independent repeated preparations and analyses of sample and reference materials. Application of the proposed method to samples from the granite-hosted Zinnwald Sn-W deposit, Germany, revealed that at least two tetrads in normalized whole rock REE patterns have to be analytically significant to rule out that fractional crystallization led to the unusual behavior of the REEs. Based on the analysis of altered albite granite and greisen samples from the endocontact of the Zinnwald granite massif, it is demonstrated that the lanthanide tetrad effect is responsible for the formation of the convex tetrads. Geological and petrological evidence suggests that the tetrads in the samples developed prior to greisenization and related cassiterite precipitation. In contrast to the endocontact samples, the rhyolitic wall rocks are typified by normalized REE patterns having tetrads that are variable in size and frequently close to the limit of analytical significance. The sizes of the tetrads apparently correlate with the intensity of albitization, but show no relation to subsequent alteration processes including greisenization and low-temperature argillization. This observation proves that curved segments in normalized whole rock REE patterns can be introduced during hydrothermal fluid-rock interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号