首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
CAM3模式海气湍流通量参数化的改进及其应用   总被引:1,自引:0,他引:1  
通过对流性阵风参数化方法,在CAM3原有海气湍流通量参数化方案(CAM3方案)中引入边界层自由对流和降水深对流对海表湍流通量的贡献,改进了CAM3模式的海气湍流通量参数化方案(CAM3 ME方案).在此基础上,利用观测海温积分改进的CAM3模式,分析改进模式对冬(DJF)、夏季(JJA)大气环流异常的模拟性能.结果表明,采用改进的海气湍流通量参数化方案,模式对冬(DJF)、夏季(JJA)大气环流异常年际变化的模拟能力有了很大提高,尤其是冬季(DJF)北太平洋和北美大陆地区以及夏季(JJA)南半球海洋上空.  相似文献   

2.
采用CAM3(Community Atmosphere Model Version3)模式中海气湍流通量参数化原方案和改进方案,利用观测海温驱动CAM3模式进行气候模拟,以分析模式对厄尔尼诺事件影响气候变化的模拟能力。结果表明,采用CAM3模式海气湍流通量参数化改进方案,模式能够更好地模拟出由厄尔尼诺事件引起的北太平洋和北美地区大气环流的变化,尤其是对厄尔尼诺年冬季阿留申低压强度和与PNA遥相关型有关的500hPa位势高度异常的模拟。  相似文献   

3.
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室( LASG/IAP)发展的大气环流格点模式(GAMIL1.0)对1980~1999年西北太平洋夏季风的模拟,讨论了阵风参数化方案对模拟效果的影响.结果表明:GAMIL1.0能合理再现西北太平洋夏季风气候态和年际变率的主要特征,不足之处在于其...  相似文献   

4.
中尺度数值模拟结果特别是高影响天气的精细预报对近地层动量和热量通量极为敏感,因此近地层湍流通量参数化方案一直是大气科学研究中一个十分重要的课题.以TOGA-COARE观测试验资料为基础,本文将湍流通量参数化方案模块从天气研究预报(WRF)模式中提取出来,与最新研发的湍流通量参数化方案(即LGLC方案)进行对比测试分析....  相似文献   

5.
东亚冬季风的模拟性能一直是检验气候模式的重要指标。本文对比分析了LASG新旧两个版本大气环流模式对东亚冬季风年际变率的模拟性能。结果表明,GAMIL2模拟的东亚冬季风指数与观测的相关系数为0.71,相较于GAMIL1(0.37)有明显改进。主要原因是GAMIL2改进了云参数化方案,能够更合理的再现加热率对厄尔尼诺的响应,有助于激发菲律宾海反气旋,从而改进东亚冬季风的模拟。  相似文献   

6.
SHAW模式的改进及其在黄土高原半干旱区的模拟研究   总被引:1,自引:0,他引:1  
陆面过程模拟研究中的一个关键问题是如何准确的计算陆气间能量交换,但现有的陆面过程模式模拟的湍流通量与观测值间仍然存在较大偏差,因此改进湍流通量的参数化方案对于提高陆面过程模式模拟能力有重要意义。本研究通过改进陆面过程模式SHAW中的热力粗糙度方案,以及引入干表层蒸发方案,以期改善湍流通量的模拟能力。在此基础上利用黄土高原半干旱区SACOL站观测资料,进行模式改进前后的单点模拟对比试验,研究其参数化方案改进对陆面过程模拟的影响。结果表明:改进后的SHAW模式能够合理地模拟黄土高原半干旱区陆面特征的变化趋势,模拟值与观测值偏差较小。与原来的SHAW模式模拟结果相比,改进后的SHAW_MOD模式显著提高了湍流通量的模拟能力,并改善了净辐射和深层土壤温度的模拟,但对土壤湿度的改进并不明显,这可能与土壤内部水热传输过程及相关参数化方案有关,还有待做进一步研究。  相似文献   

7.
SAMIL大气环流模式海面湍流通量参数化方案研究   总被引:1,自引:1,他引:0  
王自强  缪启龙  高志球 《大气科学》2010,34(6):1155-1167
将中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的大气环流谱模式SAMIL_R42L26 2.08中的海气通量参数化方案——Louis方案, 与新发展的一种新型近海层湍流通量参数化方案——LGLC方案进行比较和分析。离线测试结果表明, LGLC方案计算的通量结果与观测数据具有更好的一致性, 且由于其区分热力粗糙度和动力粗糙度, 使得对热量通量的计算更加准确。在线测试则证明, 引入LGLC方案的SAMIL模式对洋面风应力、 感热通量、 潜热通量和降水率的模拟能力有了进一步的提高, 尤其对北半球夏季印度季风和南海季风区的降水改善明显。  相似文献   

8.
关于海面湍流通量参数化的两种方案试验   总被引:2,自引:0,他引:2  
赵鸣 《气象科学》2000,21(3):319-325
本文对海气间湍流通量计算的参数化进行了两个方案的试验。第一个是对气候模式CCM3中的计算方案作了改进,用半解析的计算方法代替纯迭代的方法,减少了计算量而达到相同精度。第二个是用Brutsaert提出的廓线函数计算海面通量,达到了当前最精确模式相同的精度。这二种方案均可用于大气模式或用于由实测气象资料求通量。  相似文献   

9.
新一代格点大气环流模式与陆面生态模式AVIM的耦合研究   总被引:3,自引:2,他引:1  
毛嘉富  王斌  丹利  李银鹏 《大气科学》2005,29(6):897-910
将陆面生态模式AVIM(Atmosphere-Vegetation Interaction Model)的物理模块(PHY-AVIM)耦合到中国科学院大气物理研究所新一代格点大气环流模式GAMIL(Grid-point Atmospheric Model)中,替换GAMIL中的陆面模式BATS.对两种方案GAMIL+BATS(旧版本)和GAMIL+(PHY-AVIM)(新版本),分别独立进行11年积分,取后10年的积分结果进行分析.结果发现:新版本明显改进冬、夏季陆地表面的感热、潜热场通量,尤其在夏季,非洲大陆的中北部、欧亚大陆、北美中部以及南美北部等地区,新版本的感热场模拟值均比旧版本低,更接近NCEP再分析资料的结果;同样,对于地表面温度场,新版本在夏季明显地减弱了旧版本在大陆上的的暖偏差,模拟的结果更合理;新版本对冬、夏季的海平面气压场、降水场也有一定的改进,但改进不是很明显.以上的所有改进主要是由于AVIM引入了更细致的陆面物理过程参数化方案,以及使用了分辨率(0.5°×0.5°)更高的陆地植被分类资料.  相似文献   

10.
本文在改进了大气环流模式NCAR CAM3.1中的土壤冻融过程参数化的基础上,模拟研究了改进的冻土过程对东亚气候模拟的影响.模拟结果分析表明,改进冻融过程参数化后,冬季欧亚大陆上大部分地区大气对地表的加热偏强,而夏季地表对大气的加热偏强,尤其是青藏高原对大气的加热作用显著增强.东亚气候对冻土过程参数化方案非常敏感,冬、...  相似文献   

11.
The climate modeling community has been challenged to develop a method for improving the simulation of the Pacific-North America (PNA) teleconnection pattern in climate models. The accuracy of PNA teleconnection simulation is significantly improved by considering mesoscale convection contributions to sea surface fluxes. The variation in the PNA over the past 22 years was simulated by the Grid Atmospheric Model of IAP LASG version 1.0 (GAMIL1.0) model, which was guided by observational sea surface temperature (SST) from January 1979 to December 2000. Results show that heating in the tropical central-eastern Pacific is simulated more realistically, and sea surface latent heat flux and precipitation anomalies are more similar to the reanalysis data when mesoscale enhancement is considered during the parameterization scheme of sea surface turbulent fluxes in GAMIL1.0. Realistic heating in the tropical central-eastern Pacific in turn significantly improves the simulation of interannual variation and spatial patterns of PNA.  相似文献   

12.
Simulated outgoing longwave radiation (OLR) outputs by two versions of the grid-point atmospheric general circulation model (GAMIL) were analyzed to assess the influences of improvements in cloud microphysics and convective parameterization schemes on the simulation of the Madden-Julian oscillation (MJO) and other tropical waves. The wavenumber-frequency spectral analysis was applied to isolate dominant modes of convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and inertio-gravity (IG) waves. The performances of different versions of the GAMIL model (version 1.0 (GAMIL1.0) and version 2.0 (GAMIL2.0)) were evaluated by comparing the power spectrum distributions of these waves among GAMIL1.0, GAMIL2.0, and observational data. GAMIL1.0 shows a weak MJO signal, with the maximum variability occurring separately at wavenumbers 1 and 4 rather than being concentrated on wavenumbers 1–3, suggesting that GAMIL1.0 could not effectively capture the intraseasonal variability. However, GAMIL2.0 is able to effectively reproduce both the symmetric and anti-symmetric waves, and the significant spectra of the MJO, Kelvin, and MRG waves are in agreement with observational data, indicating that the ability of GAMIL2.0 to simulate the MJO and other tropical waves is enhanced by improving the cloud microphysics and convective parameterization schemes and implying that such improvements are crucial to further improving this model’s performance.  相似文献   

13.
The Signature of Sea Spray in the Hexos Turbulent Heat Flux Data   总被引:7,自引:0,他引:7  
The role of sea spray intransferring heat and moisture across the air-sea interface has remained elusive. Some studies have reported that sea spray does not affect the turbulent air-sea heat fluxes for 10-m wind speeds up to at least 25 m s-1, while others have reported important spray contributions for wind speeds as low as 12 m s-1. One goal of the HEXOS (Humidity Exchange over the Sea) program was to quantify spray's contribution to the turbulent air-sea heat fluxes, but original analyses of the HEXOS flux data found the spray signal to be too small to be reliably identified amid the scatter in the data. We look at the HEXOS data again in the context of the TOGA-COARE bulk flux algorithm and a sophisticated microphysical spray model. This combination of quality data andstate-of-the-art modelling reveals a distinct spray signature in virtually all HEXOS turbulent heat flux data collected in winds of 15 m s-1 and higher. Spray effects are most evident in the latent heat flux data, where spray contributes roughly 10% of the total turbulent flux in winds of 10 m s-1 and between 10 and 40% in winds of 15–18 m s-1. The spray contribution to the total sensible heat flux is also at least 10% in winds above 15 m s-1. These results lead to a new, unified parameterization for the turbulent air-sea heat fluxes that should be especially useful in high winds because it acknowledges both the interfacial and spray routes by which the sea exchanges heat and moisture with the atmosphere.  相似文献   

14.
The major features of Meiyu precipitation and associated circulation systems simulated by the grid-point atmospheric model of IAP LASG (GAMIL) with Zhang-McFarlane and Tiedtke cumulus parameterization schemes are examined in this paper. The results show that the model with both schemes can reproduce the heavy precipitation center over the Yangtze-Huai River Basin (YHRB) during the Meiyu period. The horizontal and vertical structures of the circulation systems during the Meiyu period are also well simulated,such as the intensive meridional gradients of moisture and μse (pseudo-equivalent temperature), the strong low-level southwesterly flow in the lower troposphere over East China, the location of the westerly jet stream in the upper troposphere, the strong ascending motion in heavy precipitation zone, and compensation downward motion on the northern and southern sides of the heavy precipitation belt. However, obvious discrepancies occur in the simulated temperature field in the mid-lower troposphere,especially with the Zhang-McFarlane scheme. In addition, the simulated Meiyu period (onset and duration) is found to be associated with the temperature difference in the lower atmosphere over the land and ocean, and with the cumulus parameterization schemes. The land-sea thermal contrast (LSTC) simulated by the Zhang-McFarlane scheme increases faster than that in the reanalysis from April to July, and changes from negative to positive at the end of May. Consequently, the simulated Meiyu onset begins in May, one month earlier than the observation. On the other hand, since the LSTC simulated by the Tiedtke scheme is in agreement with the reanalysis during June and July, the simulated Meiyu period is similar to the observation. The different LSTCs simulated by the GAMIL model with the two cumulus parameterization schemes may affect the Meiyu period simulations. Therefore, it is necessary to refine the cumulus parameterization scheme in order to improve the Meiyu precipitation simulation by the GAMIL model.  相似文献   

15.
The Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2) has been developed through upgrading the deep convection parameterization, cumulus cloud fraction and two-moment cloud microphysical scheme, as well as changing some of the large uncertain parameters. In this paper, its performance is evaluated, and the results suggest that there are some significant improvements in GAMIL2 compared to the previous version GAMIL1, for example, the components of the energy budget at the top of atmosphere (TOA) and surface; the geographic distribution of shortwave cloud radiative forcing (SWCF); the ratio of stratiform versus total rainfall; the response of atmospheric circulation to the tropical ocean; and the eastward propagation and spatiotemporal structures of the Madden Julian Oscillation (MJO). Furthermore, the indirect aerosols effect (IAE) is -0.94 W m-2, within the range of 0 to -2 W m-2 given by the IPCC 4th Assessment Report (2007). The influence of uncertain parameters on the MJO and radiation fluxes is also discussed.  相似文献   

16.
The authors propose a new “three-layer” conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.  相似文献   

17.
Two surface layer parameterization schemes along with five planetary boundary layer (PBL) schemes in the Weather Research and Forecasting model (WRF) are analyzed in order to evaluate the performance of the WRF model in simulating the surface variables and turbulent fluxes over an Indian sub-continent region. These surface layer schemes are based on the fifth-generation Pennsylvania State University—National Center for Atmospheric Research Mesoscale Model (MM5) parameterization; (a) Old MM5 scheme having Businger-Dyer similarity functions and (b) revised MM5 scheme utilizing the functions that are valid for full ranges of atmospheric stabilities. The study suggests that each PBL scheme can reproduce the diurnal variation of 2 m temperature, momentum flux and sensible heat flux irrespective of the surface layer scheme used for the simulations. However, a comparison of model-simulated values of surface variables and turbulent fluxes with observed values suggests that each PBL scheme is found to systematically over-estimate the nocturnal 2 m temperature and 10 m wind speed with both the revised and old schemes during stable conditions.  相似文献   

18.
GAMIL2.0 is the newly released version of the Grid-point Atmospheric Model of IAP LASG(GAMIL),in which the major modifications from GAMIL1.0 include an updated deep convection scheme and the incorporation of a two-moment bulk stratiform cloud microphysics scheme.This study evaluates the performances of both versions on Madden Julian Oscillation(MJO) simulations.The results show that GAMIL2.0 obtains an enhanced MJO eastward and northward propagation,which is weak in GAMIL1.0,and it reproduces a more reasonable MJO major structure coupling upper level wind,lower level wind,and outgoing long wave radiation.The contributions of each scheme and factor to the improvement of GAMIL2.0 simulations need further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号