首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

2.
针对IGS超快星历钟差预报产品(IGU-P)精度较低及无法满足高精度实时PPP定位精度的问题,提出了一种GPS IIR-M型卫星超快星历钟差预报的高精度修正方法。该方法对预报值的第一个数据与IGU观测部分(IGU-O)数据的最后一个历元做差,根据差值对整个IGU-O差分序列的影响程度来确定精度修正的大小和方向,从而实现IIR-M型卫星高精度预报的效果。经过IGU实测数据的测试结果表明,在短期预报6 h范围内,本文提出的精度修正方法可使3种预报方案在原有预报精度基础上分别提升6.13%、3.9%和3。48%,预报精度分别控制在0.599 ns、0.570 ns和0.531 ns,且均优于IGU-P产品预报精度。  相似文献   

3.
《测绘》2019,(5)
IGS建立的RTS实时服务,为实时精密单点定位及其应用带来了可能,而实时服务系统面临一个重要挑战是数据中断。本文对卫星钟稳定度特性进行分析,并对钟差基于历史数据进行预报,预报时长1h时,大部分GPS、GLONASS、BDS卫星精度能达到0.3ns,Galileo系统在0.1ns,满足维持cm级定位以及高精度时间传递需求。基于Galileo卫星钟卓越表现以及Galileo系统卫星数目较少考量,增加Galileo预报钟差联合GPS系统解算方法,对其定位与时间传递效果进行比较分析。实验结果表明:定位收敛后,实时数据中断期间,采用预报钟差产品可维持cm级别定位,同时在数据中断第一个小时,可维持时间传递链路结果量级几乎不变,第二小时仍可维持同一量级结果。实时产品时间传递稳定度与GBM产品相当,非差非组合解算结果与消电离层组合时间传递解算结果相当。与单GPS系统相比,增加Galileo系统预报产品联合解算,北、东、天三个方向定位精度分别提高18.7%、20.6%、25%;时间链路上时间传递稳定度略有提升,十秒稳与百秒稳分别提升11%、17%。  相似文献   

4.
针对卫星钟差呈趋势项和随机项变化的特点,提出了基于GM(1,1)与自回归求和移动平均的组合预报模型。该模型首先采用GM(1,1)模型预报钟差的趋势项部分,然后利用ARIMA模型对GM(1,1)的模型残差序列进行建模和预报,最后将GM(1,1)和ARIMA模型的预报结果对应相加即得到钟差的最终预报值。此外,采用IGS公布的精密卫星钟差进行预报试验,通过与卫星钟差预报中常用的二次多项式模型和修正指数曲线法模型预报结果的对比分析,结果表明:该方法可以对GPS卫星钟差进行高精度的中短期预报。用12 h钟差建模时,预报未来6、12、24和48 h的平均预报精度分别为0.71、1.17、1.93和4.38 ns,相比于二次多项式模型的平均预报精度分别提高了29.70%、43.75%、67.62%和76.21%;相比于修正指数曲线法模型的平均预报精度分别提高了18.39%、33.90%、61.40%和70.49%。  相似文献   

5.
针对导航卫星短期钟差预报精度不高的问题,文章提出了一种基于果蝇优化算法(FOA)优化灰色神经网络的卫星钟差预报方法.利用FOA较强的全局寻优能力对灰色参数进行迭代动态微调,改善随机初始化所导致网络进化易陷入局部最优的问题,以提高灰色神经网络的预报精度;选取IGS产品中典型的卫星钟差数据,分别采用FOA优化灰色神经网络模型、神经网络模型、灰色系统模型和灰色神经网络模型进行短期钟差预报.仿真结果表明:FOA优化灰色神经网络模型的预报精度优于其他三种模型,性能满足卫星短期高精度钟差预报的要求.  相似文献   

6.
针对传统灰色模型(grey model,GM)的拟合序列不能反映出建模数据序列级比动态变化这一问题,提出以建模序列的级比序列为对象,建立了能够反映出建模序列级比变化趋势的离散灰色模型(discrect grey model,DGM),给出了该方法应用于卫星钟差预报的具体步骤。首先,对建模钟差序列生成对应的级比序列;然后,用DGM对级比序列建模并进行预报;最后,结合级比与钟差序列之间的关系,将级比预报结果还原得到相应的钟差预报值。采用iGMAS机构提供的事后精密钟差数据分别进行了单天和连续多天的预报试验,并与二次多项式模型(quadratic polynomial model,QPM)及GM预报结果进行对比分析。结果表明,在单天预报试验中,与QPM相比,所提方法得到的预报产品平均精度在北斗卫星导航系统(BeiDou navigation satellite system,BDS)卫星和全球定位系统(global positioning system,GPS)卫星中分别提升了54.71%、46.40%;与GM相比,所提方法得到的预报产品平均精度在BDS卫星和GPS卫星中分别提升了82.96%、67.81%。在连续多天预报试验中,与QPM相比,该方法得到的预报产品多天平均精度在BDS卫星和GPS卫星中分别提升了38.15%、37.09%;与GM相比,该方法得到的预报产品多天平均精度在BDS卫星和GPS卫星分别提升了57.43%、26.30%。  相似文献   

7.
ISB是多系统PPP数据处理中必须要考虑的一项误差,因此有必要对BDS/GPS短期ISB建模和预报进行研究。为了提高ISB预报精度,针对等权LS(least square)估计ISB模型参数时忽略了拟合数据权重不同的问题,提出了采用Kalman滤波对模型参数进行估计,并根据ISB拟合数据距预报时刻的远近调整Kalman滤波拟合数据的方差。本文采用7d的ISB数据进行建模,根据所建模型预报第8天的ISB值,并对预报精度和定位结果进行了验证。进行试验的4个测站Kalman拟合模型的ISB预报精度比LS拟合模型分别提高了29.7%、11.5%、43.5%和32.0%。采用Kalman拟合模型的ISB预报值作为先验约束,PPP平均定位精度在E和U方向上比采用LS拟合模型预报值分别多提高了2.7%和0.9%,比不加ISB先验约束在E、N、U方向分别提高了10.6%、26.3%和3.4%。  相似文献   

8.
星载原子钟是北斗卫星导航系统(BDS)的核心设备,其钟差模型是北斗广播电文的重要组成部分,模型精度直接影响BDS的服务性能.本文采用星地双向时频传递(TWSTF)钟差测量为参考,评估了BDS广播电文钟差模型精度,结果表明BDS广播电文钟差模型精度优于2 ns(数据龄期小于12 h).针对BDS广播电文钟差参数解算问题,结合BDS地面段的钟差模型解算策略,本文提出进一步提升精度的多种策略.对于1h时长的短期预报,本文提出加权线性模型与混合区间线性模型的钟差拟合预报方法,短期预报精度可提高20% 以上;对于预报时长大于6 h的中长期预报,本文采用谱分析钟差时间序列,并根据谱分析结果构造预报模型,与简单的二次多项式模型预报相比,预报6 h精度提高13%,预报12 h平均提高了21%;对于IGSO/MEO卫星,本文提出将TWSTF的设备时延值作为参数估算,使钟差模型在设备切换后精度提高18%.最后,利用本文提出的改进策略对2017年1月—6月的钟差数据重新处理,获得了新的广播电文钟差模型时间序列.利用新的广播电文钟差模型进行北斗监测接收机定位,结果表明,N、E、U 3个方向精度分别提高14.22%、29.39%、14.91%,显著提升了BDS广播电文钟差服务性能.  相似文献   

9.
针对IGS RTS实时数据流产品在网络传输过程中普遍存在的数据中断问题,基于卫星钟差预报算法,文中提出实时“预报修复”方法,以钟差预报值实时修复发生中断历元的钟差数据。通过对RTS数据中断区间分布的统计分析,确定钟差预报的时间长度为5 min;采用改进的灰色系统模型,对不同时间长度初始数据的钟差预报结果进行对比,确定初始数据时间长度为10 min。以IGS事后精密卫星钟差产品为参考,对连续7 d RTS钟差产品的实时预报修复效果进行验证。以IGS02产品为例,连续7 d预报修复钟差值的平均RMS优于0.17 ns,预报修复后24 h钟差产品的RMS均在0.22 ns以内。  相似文献   

10.
日本准天顶卫星系统(QZSS)卫星通过L波段实时播发高频全球卫星导航系统(GNSS)精密轨道和钟差产品,为GNSS导航用户提供实时精密单点定位(PPP)服务. 本文以JAXA MADOCA数据中心提供的1 s采样率GPS卫星钟差数据为研究对象,首先采用阿伦方差对卫星钟差的短期稳定性进行评估;然后分别采用一阶多项式、二阶多项式和灰色模型对高频钟差产品进行建模,在5 s,10 s和30 s的拟合窗口内预报后续10 s内钟差,并基于预报残差的均方根误差(RMS)评定不同类型GPS卫星钟差产品的短期预报精度. 基于2020年1月1日-21日连续21天的实时高频钟差统计分析结果表明,不同型号的GPS卫星钟差1 s,5 s和10 s的短期稳定性均能达到10-12量级;对比预报精度显示,10 s以内的拟合窗口采用最简单的一阶多项式最为稳定可靠,10 s延迟预报RMS精度可控制在0.1 ns以内;若采用30 s的拟合窗口,考虑钟差频漂特性的二阶多项式则更为稳定可靠,预报钟差的RMS精度能达到0.15 ns以内.由此可见,本文基于MADOCA-LEX钟差产品的实时预报精度可以满足厘米级PPP的需求.   相似文献   

11.
GLONASS clock offset estimation is affected by the inter-channel biases (ICBs) caused by frequency division multiple access technique. The effect of ICBs on joint GPS/GLONASS clock offset estimation is analyzed. An efficient approach for joint estimation of GPS/GLONASS satellite clock offset is applied to the generation of 30-s clock offset products. During the estimation, the following three ICB handling strategies were tested: calculating ICBs for each GLONASS signal channel, calculating ICBs for each GLONASS satellite and neglecting ICBs. The behavior of ICBs under different strategies was statistically stable. Subsequently, the clock offset products using different ICB strategies were evaluated. The evaluation shows that consideration of the ICB is important when estimating the clock offset. Furthermore, estimating one ICB for each GLONASS satellite is better than estimating one for each GLONASS signal channel because, with the former strategy, the clock offset products behave more smoothly and have higher accuracy compared with products from the International GNSS Service Analysis Center. In addition, precise point positioning, using clock offsets based on one ICB for each GLONASS satellite, has the highest positioning accuracy.  相似文献   

12.
国际GNSS服务(IGS)提供的GPS综合产品被广泛应用于各种高精度科学研究中. 随着各国卫星导航系统的发展,亟需研究针对多系统全球卫星导航系统(GNSS)产品的综合策略. 由于卫星姿态与钟差相互耦合,综合钟差时额外考虑姿态改正将进一步提高综合产品精度,因此研究了一种顾及卫星姿态的GNSS钟差综合策略,改正姿态后GPS综合残差最大可减小80%. 对142个IGS测站进行精密单点定位(PPP)解算发现,综合产品比单个分析中心产品更加稳定,东(E)、北(N)、高(U)方向的动态定位精度最大可提升22.7%、16.7%和18.3%. 相对于未顾及姿态改正的综合产品,顾及姿态改正的综合产品的动态定位精度最大可提升65.3%.   相似文献   

13.
随着无人驾驶等高新技术的快速发展,实时精密单点定位在GNSS领域中受到越来越多的关注。研究实时卫星钟差的获取和实时定位精度具有较大的现实意义,本文为研究耦合BDS卫星轨道、钟差产品对定位精度的影响,采用不同精度的轨道产品实时获取卫星钟差。分析了卫星钟差误差与轨道误差之间的相关性及钟差对轨道误差的吸收能力,发现卫星钟差能够吸收95%以上的轨道径向误差和部分切线误差,在一定程度上弥补了轨道误差引起的定位误差。采用耦合的卫星轨道、钟差产品,单BDS系统定位精度可达到分米级的定位结果。  相似文献   

14.
为了对多个全球导航卫星系统(global navigation satellite system, GNSS)当前的广播星历精度进行一个全面的分析,对比了2014—2018年共5 a的GNSS广播星历与精密星历,并对全球定位系统(global positioning system, GPS)、格洛纳斯卫星导航系统(global navigation satellite system, GLONASS)、伽利略卫星导航系统(Galileo satellite navigation system, Galileo)、北斗卫星导航系统(BeiDou navigation satellite system, BDS)、准天顶卫星系统(quasi-zenith satellite system, QZSS)等5个系统的广播星历长期精度变化进行了分析。结果表明:5 a中GPS的广播星历轨道及钟差精度最稳定;GLONASS的广播星历轨道精度稳定性较好,但其钟差精度存在较大的离散度;Galileo得益于具备全面运行能力(full operational capability, FOC)卫星的大量发射及运行,其广播星历轨道、钟差精度大幅度变好,切向轨道、法向轨道与钟差精度已赶超GPS;BDS的广播星历轨道精度离散度较大,钟差精度出现不稳定现象;QZSS的广播星历轨道与钟差精度的稳定性与离散度相对最差。以2018年1 a的广播星历与精密星历为例分析了各个系统当前的广播星历精度,结果表明,当前GPS、GLONASS、Galileo、BDS、QZSS的考虑轨道误差与钟差误差贡献的空间信号测距误差(signal-in-space ranging error,SISRE)分别为0.806 m、2.704 m、0.320 m、1.457 m、1.645 m,表明Galileo广播星历整体精度最高,GPS次之,其次分别是BDS、QZSS和GLONASS。只考虑轨道误差贡献的SISRE分别为0.167 m、0.541 m、0.229 m、0.804 m、0.675 m,表明GPS广播星历轨道精度最高,其次分别是Galileo、GLONASS、QZSS和BDS。GPS卫星广播星历中新型号卫星的钟差精度总体要优于旧型号卫星。  相似文献   

15.
GPS/GLONASS卫星钟差联合估计过程中,由于GLONASS系统采用频分多址技术区分卫星信号,因而会产生频率间偏差(IFB)[1]。本文在GPS/GLONASS卫星定轨过程中的IFB参数特性分析的基础上,引入IFB参数,实现顾及频率间偏差的GPS/GLONASS卫星钟差实时估计。同时,为解决实时估计中待估参数过多导致的实时性较弱等问题,基于非差伪距观测值和历元间差分相位观测值改进实时估计数学模型,实现多系统卫星钟差的联合快速估计。结果表明:GPS/GLONASS联合估计时需引入IFB参数并优化其估计策略,采用MGEX和iGMAS跟踪站的实测数据进行实时钟差解算,快速估计方法可实现1.6 s逐历元快速、高精度估计,与GBM提供的最终精密卫星钟差相比,GPS卫星钟差实时精度约为0.210 ns,GLONASS卫星约为0.298 ns。  相似文献   

16.
Real-time clock offset prediction with an improved model   总被引:5,自引:3,他引:2  
The GPS orbit precision of the IGS ultra-rapid predicted (IGU-P) products has been remarkably improved since 2007. However, the satellite clock offsets of the IGU-P products have not shown sufficient high-quality prediction to achieve sub-decimeter precision in real-time precise point positioning (RTPPP), being at the level of 1–3 ns (30–90 cm) RMS in recent years. An improved prediction model for satellite clocks is proposed in order to enhance the precision of predicted clock offsets. First, the proposed prediction model adds a few cyclic terms to absorb the periodic effects, and a time adaptive function is used to adjust the weight of the observation in the prediction model. Second, initial deviations of the predictions are reduced by using a recomputed constant term. The simulation results have shown that the proposed prediction model can give a better performance than the IGU-P clock products and can achieve precision better than 0.55 ns (16.5 cm) in real-time predictions. In addition, the RTPPP method was chosen to test the efficiency of the new model for real-time static and kinematic positioning. The numerical examples using the data set of 140 IGS stations show that the static RTPPP precision based on the proposed clock model has been improved about 22.8 and 41.5 % in the east and height components compared to the IGU-P clock products, while the precisions in the north components are the equal. The kinematic example using three IGS stations shows that the kinematic RTPPP precision based on the proposed clock model has improved about 30, 72 and 44 % in the east, north and height components.  相似文献   

17.
卫星钟差的难预测性是影响实时高精度定位的重要因素之一。为快速获得高精度位置或对流层等信息,在非差观测模型的基础上,本文提出了一种延迟量约1 h的近实时钟差估计策略,该策略主要包含超快速轨道解算和钟差估计两部分。经验证,预报部分第2~5 h的GPS轨道三维平均精度为3.85 cm,BDS GEO和IGSO+MEO轨道三维平均精度分别为81.4和21.74 cm。基于超快速轨道可获得近实时钟差精度GPS为0.054 ns,BDS为0.12 ns。最后通过BDS+GPS静态PPP试验验证了轨道和钟差的可用性。  相似文献   

18.
多星座组合定位可以提升导航定位性能,但不同星座观测量组合时需要考虑合适的随机模型.传统方法是根据经验直接设定各系统的等价权重,但会导致随机模型确定不精确,从而影响组合系统的性能提升.将Helmert方差分量估计方法应用于GPS/GLONASS/BDS/Galileo组合精密单点定位(PPP)中,以自适应确定各系统间权比.采用国际GNSS服务(IGS)MGEX(Multi-GNSS Experiment)观测网的10个测站一周的观测数据进行静态和仿动态试验.结果表明:采用Helmert方差分量估计定权方法可显著提高GPS/GLONASS/BDS/Galileo组合PPP的收敛速度,与等权定权方案比较,静态模式下平均提高52%,仿动态模式下平均提高64%.因定位精度主要由载波相位观测值精度和误差修正水平决定,在静态和仿动态测试中Helmert方差分量估计方法对定位精度没有明显改善.  相似文献   

19.
在进行GPS/GLONASS联合卫星钟差估计时,GLONASS码频间偏差(inter-frequency bias,IFB)因卫星频率间的差异而无法被测站接收机钟差参数吸收,其一部分将进入GLONASS卫星钟差估值中。通过引入多个"时频偏差"参数(inter-system and inter-frequency bias,ISFB)及附加基准约束对测站GLONASS码IFB进行函数模型补偿,实现其与待估卫星钟差参数的有效分离,并对所估计实时卫星钟差和实时精度单点定位(real-time precise point positioning,RT-PPP)进行精度评估。结果表明,在卫星钟差估计观测方程中忽略码IFB,会明显降低GLONASS卫星钟差估值精度;新方法能有效避免码IFB对卫星钟差估值的影响,所获得GPS、GLONASS卫星钟差与ESA(European Space Agency)事后精密钟差产品偏差平均均方根值分别小于0.2 ns、0.3 ns。利用实时估计卫星钟差进行静态RT-PPP,当观测时段长为2 h时,GPS单系统、GPS/GLONASS组合系统的3D定位精度优于10 cm,GLONASS单系统3D定位精度约为15 cm;三种模式24 h单天解的3D定位精度均优于5 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号