首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
新书架     
《气象》2016,(3)
正《气候变化对农业气候资源有效性的影响评估》郭建平等著本书主要介绍了1951—2100年我国主要农业气候资源的空间分布特征及演变趋势,我国东北春玉米、黄淮海地区冬小麦和夏玉米、南方水稻生长季农业气候资源、气候生产力及农业气候资源利用率等的分布特征和演变趋势,并以东北地区为例,分析了农业适应气候变化措施对作物生产力和农业气候资源有效性的贡献。本书可供农业、农业气象,特别是气候变化和农业相关领域的科研和业务人员参考,也可为政府制定农业适应气候变化措施政策提供参考依据。  相似文献   

2.
1引言气候的不稳定性对农业生产的影响十分显著,做为我国重要商品粮基地的东北区,其农业生产对气候条件的依赖性和对气候不稳定的敏感性都很大。因此,系统地研究各地气候条件的变化规律,详细地分析不同地域之间气候要素在气候变化上存在的差异,就显得十分必要。在东北区的范围内,各地之间气温的变化基本上是趋于一致的”‘。过去对吉林省范围的分析发现,降水的气候变化存在着一定的地域差异t’1。为了更准确地分析东北地区各地旱涝的物理成因及更客观地做出不同区域的降水预测,因地制宜地服务于东北区各地的农业生产、减灾、防灾工…  相似文献   

3.
与IPCC第五次评估报告相比,第六次评估报告(AR6)有关农业的评估对象由作物生产系统延伸到粮食供应链系统,气候变化对作物生产不利影响的证据在加强。气候变化改变了作物适宜种植区,使中高纬度及温带地区作物种植界限向高纬度、高海拔地区推移。人为引起的气候变暖阻碍了作物产量的增长,地表O3浓度增加使作物产量降低,CH4排放加剧了这种不利影响。气候变化加剧作物病虫草害,极端气候事件高发加剧了粮食不安全,推升了国际粮食价格。适应措施有助于减缓气候变化不利影响,基于自然的适应方案在增强作物生产系统气候恢复力和保障粮食安全方面具有较高潜力。从保障国家粮食安全和重大战略需求出发,AR6报告对我国农业应对气候变化相关工作的启示如下:需要高度重视气候变化背景下作物种植适宜区转变与种植带北移的重要战略价值,合理规划农业生产布局;加强农业气象灾害和病虫害防治体系和能力建设,保障粮食生产稳定性;关注气候变化对国际作物生产和谷物贸易的影响,统筹国内、国际市场粮食资源,保障粮食安全;推进农业温室气体减排与作物生产高效协同,为实现国家减排目标做出贡献。  相似文献   

4.
气候变化对中国农业生产影响研究展望   总被引:32,自引:0,他引:32  
综述了气候变化背景下中国农业气候资源、农业气象灾害(干旱、洪涝、高温热浪、低温灾害)和农业病虫害的变化趋势与规律,从农业生产潜力变化、作物种植制度变化和作物品质变化等方面阐明了气候变化对中国农业生产的影响事实,分析了气候变化对中国农业生产的可能影响和中国农业生产适应气候变化的对策措施。在此基础上,针对气候变化背景下中国气候资源的时空分布特点及农业生产出现的新情况、新问题,指出了当前中国关于气候变化对农业影响研究存在的不足,提出了未来气候变化对中国农业生产影响研究需要重视的方面,为确保气候变化背景下中国的农业生产安全及粮食安全提供决策支持。  相似文献   

5.
1试验目的“气候异常对国民经济影响评估业务系统的研究”是国家“九五”重点攻关课题,其中专题为“气候异常对我国农业生产影响评估模型的研究”的子专题“气候异常对我国东北玉米生产影响评估模型的研究”由吉林省气象研究所承担。为此,从1997年开始,我们在榆树市设立了玉米生长模拟田间试验,开展了“东北玉米生长动态模拟模型试验研究”,进行了生物量和气象条件同步观测,分析研究气候变化对玉米各器官(根、茎、叶及果穗等)生长及对产量形成的影响,最终建立更符合实际的玉米生长动态模拟模型,以便于根据气候变化采取农业生产管…  相似文献   

6.
近30年东北春玉米发育期对气候变化的响应   总被引:12,自引:4,他引:8       下载免费PDF全文
基于1981—2010年东北地区55个农业气象观测站发育期数据、16个气象站逐日气象资料,采用趋势变率、秩相关分析、主成分分析和结构方程模型等方法,分析了近30年东北春玉米关键发育期的变化特征,探讨了春玉米发育期对不同时间尺度气象因子的响应规律。结果表明:1981—2010年春玉米关键发育期 (播种期、抽雄期、成熟期) 均有延后趋势,大部分地区春玉米生长前期 (播种期—抽雄期) 日数减少,生长后期 (抽雄期—成熟期) 日数增加,全生育期日数增加。在绝大多数年份,春玉米播种期在温度适播期之后,成熟期在初霜日之前。近30年对东北春玉米生育期日数影响最大的气象要素为温度,主成分分析结果显示,年际尺度的升温、温度生长期的延长和作物生长期的高温对生育期日数影响显著;结构方程模型指出,作物生长期的最高温度和最低温度对生育期日数影响有间接效应,主导气象要素能够解释生育期日数变异的44%。全球变暖背景下,东北春玉米发育期变化是作物响应气候变化和农业生产适应气候变化的共同结果。  相似文献   

7.
解读政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)粮食系统的影响与适应,对科学认识国际气候变化对农业影响学科前沿动态具有重要意义。最新发布的IPCC AR6在深化阐述粮食生产能力、种植布局、病虫害影响的基础上,高度确信人类活动导致的气候变暖对粮食系统产生了负面影响,论述了粮食运输及消费中的气候风险,解析了粮食生产-存储-运输-消费的全链条气候变化影响,延展了影响评估归因内容并丰富了农业环境影响等相关科学认识。对于粮食系统的适应能力,强调适应及减缓协同发展的气候恢复力发展路径,适应评估从适应能力、适应方式等理论逐步转向适应实施行动和成效评估,并注重适应行动的区域特异性和有效性。本次评估强调了气候变化对作物影响的检测和归因、关注了气候和农业环境变化复合影响、倡导基于生态系统的适应方案和技术,评估了现有适应技术的可行性和成效。报告内容对中国强化农业影响评估能力及把握国际学科动态具有参考价值。  相似文献   

8.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

9.
气候变化对中国农业生产的影响研究进展   总被引:54,自引:6,他引:48       下载免费PDF全文
气候变化已成为当今科学界、各国政府和社会公众普遍关注的环境问题之一,气候变化可能对生态系统和社会经济产生灾难性影响,农业是受气候变化影响最直接的脆弱行业。因此,气候变化对农业生产的影响研究一直是气候变化研究领域中的热点问题之一。该文系统介绍了有关全球气候变化对中国农业生产影响研究的现状与进展,包括气候变化对农业影响的研究方法、大气中温室气体浓度增加对农作物的影响试验、气候变化对农业气候资源的影响、气候变化对农作物生长发育和产量的影响、气候变化对农业种植制度和品种布局的影响、气候变化对农作物气候生产潜力和气候资源利用率的影响等,指出当前在研究气候变化对农业影响评估中存在的问题,提出了今后应加强对气候变化情景和预测模式不确定性的研究、气候变化对农业影响的方法研究。此外,气候变化背景下极端天气气候事件对农业生产的影响以及气候变化对农业病虫害的影响研究等仍较薄弱,有待进一步加强和深入。  相似文献   

10.
农业生产对气候变化的脆弱性研究方法初探   总被引:13,自引:1,他引:13  
在总结脆弱性的定义与介绍相关研究方法的基础上,提出了农业生产对气候变化的脆弱性的初步定义、研究思路、指标体系及计算方法,并讨论了区域农业生产对气候变化影响的适应对策应遵循的有关原则。  相似文献   

11.
华北地区气候变化及其对水资源的影响   总被引:10,自引:0,他引:10  
根据华北地区近50年的气候、水资源、旱涝灾害面积等资料,对该地区的气候特点及变化趋势、水资源的变化规律与气候变化的相互关系、极端气候事件对水资源的影响及气候变化对农业旱涝的影响进行了分析,并在气候模式预测结果的基础上,简要分析了华北地区未来气候变化对水资源的可能影响,提出了相应的对策建议,从而为实现水资源可持续利用提供科学依据。  相似文献   

12.
Although sub-Saharan Africa does not contribute significantly to greenhouse gas emissions, significant adverse impacts of climate change are anticipated in this region. Countries in West Africa, which are heavily dependent on rain-fed agriculture, are projected to experience more frequent and intense droughts, altered rainfall patterns and increases in temperature through the end of this century. Changes in hydrology and temperature are likely to affect crop yields, thereby placing pressure on scarce resources in a region that is characterised by limited social, political, technical and financial resources. The success with which communities cope with the impacts of climate change is influenced by existing conditions, forces and characteristics which are peculiar to each of these communities. This paper assesses the preferred adaptation strategies during floods and droughts of males and females in three different occupations (farming, fishing, and charcoal production). Findings are based upon an analysis of focus group discussions and a ranking of preferred adaptation options in three communities in the Afram Plains of Ghana. Assessments of this nature should aid in the selection and implementation of adaptation options for communities and households, which is the level at which climate change adaptation is likely to occur in West Africa.  相似文献   

13.
Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.  相似文献   

14.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

15.
Most research on future climate change discusses mitigation and impacts/adaptation separately. However, mitigation will have implications for impacts and adaptation. Similarly, impacts and adaptation will affect mitigation. This paper begins to explore these two veins of research simultaneously using an integrated assessment model. We begin by discussing the types of interactions one might expect by impact sector. Then, we develop a numerical experiment in the agriculture sector to illustrate the importance of considering mitigation, impacts, and adaptation at the same time. In our experiment, we find that climate change can reduce crop yields, resulting in an expansion of cropland to feed a growing population and a reduction in bioenergy production. These two effects, in combination, result in an increase in the cost of mitigation.  相似文献   

16.
While previous studies have focused on impacts of average climate change on Russian agriculture and water resources, this study takes into account the impact of changing frequency and spatial heterogeneity of extreme climate events, and the reliance of most of Russia on a few food producing regions. We analyze impacts of the IPCC A2 and B2 climate scenarios with the use of the Global Assessment of Security (GLASS) model (containing the Global Agro-Ecological Zones (GAEZ) crop production model and the Water-Global Assessment and Prognosis (WaterGAP 2) water resources model). As in previous studies we find that decreased crop production in some Russian regions can be compensated by increased production in others resulting in relatively small average changes. However, a different perspective on future risk to agriculture is gained by taking into account a change in frequency of extreme climate events. Under climate normal conditions it is estimated that “food production shortfalls” (a year in which potential production of the most important crops in a region is below 50% of its average climate normal production, taking into account production in food-exporting regions) occur roughly 1–3 years in each decade. This frequency will double in many of the main crop growing areas in the 2020s, and triple in the 2070s. The effects of these shortfalls are likely to propagate throughout Russia because of the higher likelihood of shortfalls occurring in many crop export regions in the same year, and because of the dependence of most Russian regions on food imports from a relatively few main crop growing regions. We estimate that approximately 50 million people currently live in regions that experience one or more shortfalls each decade. This number may grow to 82–139 million in the 2070s. The assessment of climate impacts on water resources indicates an increase in average water availability in Russia, but also a significantly increased frequency of high runoff events in much of central Russia, and more frequent low runoff events in the already dry crop growing regions in the South. These results suggest that the increasing frequency of extreme climate events will pose an increasing threat to the security of Russia's food system and water resources.  相似文献   

17.
Forty-nine countries participating in the U.S. Country Studies Program (USCSP) assessed climate change impacts in one or more of eight sectors: coastal resources, agriculture, grasslands/livestock, water resources, forests, fisheries, wildlife, and health. The studies were generally limited to analysis of first order biophysical effects, e.g., coastal inundation, crop yield, and runoff changes. There were some limited studies of adaptation. We review and synthesize the results of the impact assessments conducted under the USCSP. The studies found that sea level rise could cause substantial inundation and erosion of valuable lands, but, protecting developed areas would be economically sound. The studies showed mixed results for changes in crop yields, with a tendency toward decreased yields in African and Asian countries, particularly southern Asian countries, and mixed results in European and Latin American countries. Adaptation could significantly affect yields, but it is not clear whether the adaptations are affordable or feasible. The studies tend to show a high sensitivity of runoff to climate change, which could result in increases in droughts or floods. The impacts on grasslands and livestock are mixed, but there appears to be a large capacity for adaptation. Human health problems could increase, particularly for populations in low-latitude countries with inadequate access to health care. The USCSP assessments found that the composition of forests is likely to change, while biomass could be reduced. Some wildlife species were estimated to have reduced populations. The major contribution of the USCSP was in building capacity in developing countries to assess potential climate impacts. However, many of the studies did not analyze the implications of biophysical impacts of climate change on socioeconomic conditions, cross-sectoral integration of impacts, autonomous adaptation, or proactive adaptation. Follow-on work should attempt to develop capacity in developing and transition countries to conduct more integrated studies of climate change impacts.  相似文献   

18.
气候变化对中国水资源影响的适应性评估与管理框架   总被引:8,自引:0,他引:8  
 通过论述气候变化对中国水资源影响的适应性评估与管理框架,提出一个气候变化影响决策评估工具,它包括:未来气候变化对中国水资源潜在影响的定性描述分析、半定量与定量分析以及适应性对策评估。由于不同气候区域所面临的水资源问题不同,选择中国4个典型案例区域,并确定不同的目标进行气候变化适应性管理综合研究,提出了甄别气候变化影响和适应性管理的新的思路、框架与方法论。该项研究为应对未来气候变化影响的水资源规划与风险管理提供了途径与方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号