首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
东构造结是印度板块和欧亚板块碰撞的奇点,历来是地学研究的热点.本文在中国及区域地震台网资料所得结果的基础上,增加了1964~2006年的ISC数据,总共349475个Pn波到时资料,着重反演了东构造结及周边地区Pn波速度结构和各向异性.结果表明该区Pn速度结构与现代构造活动存在较明显的关联:四川盆地,印度板块是构造稳定的地块而具有高速异常;藏东南和南北地震带构造活动强烈而显示低速异常,云南南部、中南半岛北部因处于缅甸弧弧后扩张区其低速异常尤为明显. Pn波各向异性表明快波方向在东构造结有一顺时针旋转的趋势:在藏东南是北东方向,然后在南北地震带先转向东南,再转向南,最后在中南半岛北部突变为近东西向. 这是因为青藏高原物质在东流的过程中,相对于东构造结和四川盆地,在藏东南和南北地震带存在强烈的简单剪切变形,而在缅甸弧后扩张区为纯剪切变形所致. SKS快波方向也有类似的旋转趋势,但在中南半岛北部附近,具有近东西向Pn快波方向的区域,比云南南部东西向SKS区域偏南3°左右,这可能是由于该地区岩石圈上部运动比下部更快的结果.  相似文献   

2.
基于华北中西部和青藏高原东北缘3个流动台阵共480个台站新得到的远震XKS(SKS、SKKS和PKS)波分裂结果,并结合研究区已得到的987个台站的分裂结果,获得了高分辨率的上地幔各向异性图像.分析表明,鄂尔多斯块体的时间延迟较小,反映了其稳定性和弱的各向异性变形特征,可能保留了古老克拉通根的"化石"各向异性,但其靠近边缘的局部区域表现出与相邻边缘相一致的各向异性特征,反映了其局部区域受到了与其相邻边缘的构造活动影响.青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘快波方向主要为NW-SE方向,鄂尔多斯块体北缘主要为NNW-SSE方向,反映了青藏高原沿NE方向推挤过程中岩石圈沿NW-SE方向和NNW-SSE方向发生了伸展变形;位于四川盆地和鄂尔多斯块体两个刚性块体间的秦岭造山带的快波方向为近E-W方向或NWW-SEE方向,时间延迟较大,推测岩石圈东向挤出和软流圈东流共同促进了观测的各向异性;在鄂尔多斯块体南部边缘,快波方向自西向东逆时针沿西南缘六盘山的NW-SE方向转到南缘渭河地堑的近E-W方向再到东南缘太行山的NEE-SWW方向,推断该区域可能存在一个绕刚性块体的逆时针软流圈绕流,与上覆岩石圈左旋简单剪切变形产生了观测的各向异性,并一起驱动了鄂尔多斯块体的逆时针旋转.作为华北克拉通东西部的过渡带,华北中部的各向异性相对复杂,其东部快波方向为近E-W方向或NWW-SEE方向,时间延迟较大,其各向异性主要反映了太平洋板块西向俯冲作用引起的地幔流;其西北部吕梁山的各向异性主要由岩石圈沿NNW-SSE到NW-SE的拉张变形导致,而西南部太行山的各向异性还反映了软流圈绕流作用.鄂尔多斯块体东北缘大同火山区存在一个快波方向顺时针快速旋转且时间延迟较小的区域,可能与火山群下地幔岩浆上涌形成的局部地幔对流相关.紧邻华北北部的中亚造山带中南部快波方向为近E-W方向,其各向异性不仅受到与构造走向一致的岩石圈变形作用,而且也受到太平洋板块西向俯冲引起的地幔流影响.  相似文献   

3.
Over the past 10 years,the number of broadband seismic stations in China has increased significantly.The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland.Based on teleseismic SKS and SKKS phases recorded in the seismic stations,we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting.We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers.From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs.These splitting parameters reveal the complexity of the upper mantle anisotropy image.Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland,with an average shear-wave time delay of 0.95 s;the anisotropy in the western region is slightly larger(1.01 s)than in the eastern region(0.92 s).On a larger scale,the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode,i.e.the crust-lithospheric mantle coherent deformation.In eastern China,the average fast-wave direction is approximately parallel to the direction of the absolute plate motion;thus,the upper mantle anisotropy can be attributed to the asthenospheric flow.The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions,where the anisotropy images are more complicated,exhibiting"fossil"anisotropy and/or two-layer anisotropy.The collision between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland,while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.  相似文献   

4.
南海东北部及其邻近地区的Pn波速度结构与各向异性   总被引:7,自引:12,他引:7       下载免费PDF全文
利用中国地震台网和ISC台站1980~2004年的地震数据,反演了南海东北部及其邻近地区的Pn波速度结构和各向异性.上地幔顶部的速度变化揭示出区域地质构造的深部特征:华南地区速度较高并且变化平缓,具有构造稳定地区的岩石层地幔特征;华南沿海尤其是滨海断裂带附近出现低速异常,表明该断裂可能穿过壳幔边界深达上地幔顶部.南海北部至台湾海峡较高的速度与华南地区类似,反映出大陆边缘和陆架地区的岩石层地幔性质;西沙海槽附近较高的速度不仅反映了华南大陆向南的延伸,而且与海槽裂谷拉张引起的地幔上拱有关,整个南海北部没有发现大规模地幔热流的活动痕迹.相比之下,南海东部次海盆的上地幔顶部存在明显的低速异常,对应于海底扩张中心的地幔上涌区,表明岩石层地幔强烈减薄甚至缺失;台湾东部-吕宋-菲律宾北部的低速异常与地震、火山活动以及岩浆作用紧密相关,揭示了西太平洋岛弧俯冲带的活动特征;南海东北部的洋-陆边界清晰,南海东部和菲律宾海西部较高的速度代表了海洋岩石层地幔的性质.Pn波各向异性反映出区域性构造应力状态及岩石层地幔的变形痕迹:华南地区的各向异性较小,说明这一构造稳定地区的岩石层地幔变形程度较弱;南海北部的快波方向与地壳浅表层构造的伸展方向一致,主要反映了中、新生代以来的大陆边缘张裂和剪切作用对岩石层地幔结构的影响;琉球-台湾-吕宋岛弧两侧各向异性十分强烈,平行于海沟的快波方向表明菲律宾海板块和欧亚大陆的相互作用导致俯冲板块前缘的岩石层地幔强烈变形;台湾东南海域快波方向的变化可能与欧亚大陆和菲律宾海板块俯冲机制的转换以及岩石层被撕裂有关.  相似文献   

5.
The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms trav-ersing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most re-gions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.  相似文献   

6.
Analysis of seismic anisotropy in the crust and mantle wedge above subduction zones gives much information about the dynamic processes inside the Earth. For this reason, we measure shear wave polarization anisotropy in the crust and upper mantle beneath central and southwestern Japan from local shallow, intermediate, and deep earthquakes occurring in the subducting Pacific slab. We analyze S phases from 198 earthquakes recorded at 42 Japanese F-net broadband seismic stations. This data set yields a total of 980 splitting parameter pairs for central and southwestern Japan. Dominant fast polarization directions of shear waves obtained at most stations in the Kanto–Izu–Tokai areas are oriented WNW–ESE, which are sub-parallel to the subduction direction of the Pacific plate. However, minor fast polarization directions are oriented in NNE–SSW directions being parallel to the strike of the Japan Trench, especially in the north of Izu Peninsula and the northern Tokai district. Generally, fast directions obtained at stations located in Kii Peninsula and the Chubu district are oriented ENE–WSW, almost parallel to the Nankai Trough, although some fast directions have NW–SE trends. The fast directions obtained at stations in northern central Honshu are oriented N–S. Delay times vary considerably and range from 0.1 to 1.25 s depending on the source depth and the degree of anisotropy along the ray path. These lateral variations in splitting character suggest that the nature of anisotropy is quite different between the studied areas. Beneath Kanto–Tokai, the observed WNW–ESE fast directions are probably caused by the olivine A-fabric induced by the corner flow. However, the slab morphology in this region is relatively complicated as the Philippine Sea slab is overriding the Pacific slab. This complex tectonic setting may induce lateral heterogeneity in the flow and stress state of the mantle wedge, and may have produced NNE–SSW orientations of fast directions. The ENE–WSW fast directions in Kii Peninsula and the Chubu district are more coherent and may be partly induced by the subduction of the Philippine Sea plate. The N–S fast directions in northern central Honshu might be produced by the trench-parallel stretching of the wedge due to the curved slab at the arc–arc junction.  相似文献   

7.
中国东北地区北部上地幔各向异性及其动力学意义   总被引:4,自引:4,他引:0       下载免费PDF全文
强正阳  吴庆举 《地球物理学报》2015,58(10):3540-3552
中国东北地区广泛发育新生代板内火山,晚中生代以来岩石圈遭受过多期拉张作用.作为中国唯一的深震孕育区,中国东北地区受到太平洋板块的西向俯冲,使得其成为研究岩石圈变形、板块俯冲和板内火山成因及其相互作用关系的天然实验室.通过分析架设在中国东北地区北部的147个流动和固定台站的SKS波形数据,共计得到了377对各向异性参数和251个无效分裂结果.结果表明,中国东北地区东西两侧具有不同的各向异性分布:西部地区各向异性方向变化范围为N143-199°E,平均N169°E,与晚中生代岩石圈伸展方向一致;其各向异性延迟时间平均值约为0.8s,说明来自地幔的各向异性比较微弱,主要由残留在岩石圈中的古老变形所引起.同时,在松辽盆地和佳木斯地块部分区域,观测到延迟时间较小的各向异性(~0.4s),可能是由于岩石圈的拆沉和热地幔物质的上涌侵蚀了保留在岩石圈的古老形变所致.在研究区东部,NNW-SSE朝向的各向异性被观测到,并伴随较大的延迟时间(大于1.0s),可能与太平洋板块撕裂回撤而产生的地幔流动有关.此外,近W-E方向的各向异性只在佳木斯地块被观测到,而太平洋板块在地幔过渡带中的俯冲可能是其产生的主要成因.  相似文献   

8.
南北构造带南段上地幔各向异性特征   总被引:13,自引:6,他引:7       下载免费PDF全文
对布设在南北构造带南段的中国地震科学探测台阵项目一期350个宽频带流动台站和中国地震台网90个宽频带固定台站记录的远震XKS(SKS、SKKS和PKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和"叠加"分析方法求得每一个台站的XKS波的快波偏振方向和快、慢波的时间延迟,获得了南北构造带南段上地幔各向异性图像.结果显示研究区的各向异性具有明显的南北分区特征,北部的快波方向为近N-S方向,而南部主要表现为近E-W方向,且北部的平均时间延迟小于南部.分析表明,具有厚岩石圈的北部的各向异性主要由岩石圈变形引起,是一种垂直连贯变形模式;具有薄岩石圈的南部的各向异性主要由软流圈地幔流引起,缅甸和巽达板片的后撤/回转作用产生了指向西南的软流圈地幔流,在岩石圈底部和软流圈之间产生了一个水平差异运动,产生了一个与简单剪切一致的软流圈变形结构,从而产生了南部观测的各向异性.  相似文献   

9.
刘渊  薛梅 《地震学报》2021,43(1):73-83
基于DONET海底观测网的直达S波地震记录,采用波形旋转互相关方法和最小特征值最小化方法求得了日本南海海域俯冲带横波分裂快轴方向和分裂时间,获得了该俯冲带地震波的各向异性结果。结果显示:该俯冲带地震波的各向异性快轴方向基本平行于南海海槽走向,分裂时间为0.1—0.96 s。这表明:日本南海海域俯冲带各向异性来源于太平洋俯冲板块上覆地幔楔和菲律宾海俯冲板块;地幔楔各向异性产生于二维地幔楔拐角流所导致的各向异性矿物晶体的定向排列;菲律宾海俯冲板块的各向异性则产生于板块扩张时期形成的“化石各向异性”和俯冲过程中板块挠曲产生的断层;日本南海海域俯冲带大范围变化的分裂时间反映了该地区各向异性介质的强度和(或)厚度的不均匀性。   相似文献   

10.
青藏高原东北缘上地幔各向异性研究   总被引:21,自引:13,他引:8       下载免费PDF全文
通过分析位于青藏高原东北缘的区域数字地震台网30个台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了青藏高原东北缘上地幔各向异性图像.从得到结果看,青藏高原东北缘的各向异性快波方向基本上呈NW-SE方向,并有一顺时针旋转趋势,快、慢波时间延迟是0.70~1.51 s.青藏高原东北缘的SKS快波偏振方向与区域内主要构造断裂走向基本一致;各向异性快波偏振方向变化与区域内最小平均主压应力方向变化相似,也与由GPS测量得到的速度场方向变化相似.研究表明青藏高原东北缘上地幔物质在区域构造应力场的作用下,发生了顺时针旋转的形变以至流动,使得上地幔中橄榄岩的晶格排列方向平行于物质形变或流动方向,上地幔变形和上覆地壳变形可能存在垂直连贯变形特征.  相似文献   

11.
基于青藏高原东北缘甘肃区域台网41个宽频带地震台站的远震记录资料,通过PKS、SKS和SKKS震相的剪切波分裂分析,获取了台站下方介质的各向异性分裂参数,得到该地区上地幔各向异性分布图像,并结合GPS速度场和地壳剪切波各向异性分析青藏高原东北缘各向异性形成机制及壳幔各向异性特征.分析结果认为,在阿尔金断裂带西侧,各向异性快波偏振呈NWW-SEE方向,与断裂带走向有一定夹角,与塔里木盆地向柴达木盆地俯冲方向一致,说明该地区上地幔物质变形主要受古构造运动的影响,属于"化石"各向异性.在祁连山-河西走廊构造区,XKS快波偏振呈NW-SE方向,一致性较好,与区域断层走向方向相同;由区域小震的地壳剪切波分裂分析得到的地壳剪切波快波偏振在该区域呈NE-SW方向,与相对于稳定欧亚大陆GPS运动速率一致,地壳和地幔快波偏振方向的差异表明壳幔变形可能有不同的形变机制.在陇中盆地及其周缘,由于处于活跃青藏地块与稳定鄂尔多斯地块之间的过渡带,相对于其他区域具有更加复杂的构造背景,地壳快波偏振和地幔快波偏振总体上呈NWW-SEE方向,说明壳幔变形机制可能相同;但不同台站结果之间存在一定离散性,推测是由于受局部构造特征差异性造成.  相似文献   

12.
本研究收集了中国东北地区2008—2016年九年时间内207个固定地震台站和127个NECESSArray流动地震台站的波形资料,利用SKS波分裂的最小切向能量网格搜索方法获得了243个台站的有效分裂结果.研究结果显示,尽管研究区各向异性快波方向基本以NW-SE向为主,但无论是在快波方向上还是快慢波时间延迟上不同构造单元内部与不同构造单元之间均存在着较大差别.大兴安岭造山带北部的各向异性快波方向自北向南由NNE-SSW向转变为NNW-SSE向,在中部以NW-SE向为主,而南部自北而南由NE-SW向逐渐转变为近E-W向;松辽盆地的各向异性快波方向在北部自西向东主要表现为由NNW-SSE向逐渐转变为NW-SE向,在中部自西向东由NE-SW向转变为近E-W向,而在南部既有NE-SW向又有NW-SE向;佳木斯地块各向异性方向由西部的NW-SE转变为东部的NNW-SSE,同时快慢波时间延迟逐渐变大;长白山造山带北部自北向南由NW-SE向逐渐转变为近E-W向,中部各向异性快波方向为NNW-SSE向,且快慢波时间延迟较大,而南部以NW-SE向为主;燕山造山带的各向异性快波方向主要沿E-W向分布,基本平行于燕山造山带的走向.这些结果说明,尽管复杂的各向异性快波方向与局部岩石圈拆沉和热物质上涌有关,但更重要是与"大地幔楔"中物质水平流等动力过程密切相关,也有待将来结合更多地震资料如面波不同深度的特征各向异性进行分析.在阿巴嘎火山群、哈拉哈火山群、长白山火山、龙岗火山和镜泊湖火山区及五大连池火山区等特殊构造区的周边地区,各向异性快波方向围绕这些构造区随方位均发生明显变化,暗示了火山区下方热物质上涌可能影响了"大地幔楔"中的软流圈物质水平流方向.  相似文献   

13.
青藏高原上地幔速度结构及其动力学性质   总被引:3,自引:2,他引:1       下载免费PDF全文
利用地震层析成像结果分析了中国西部地区的上地幔速度结构,发现青藏高原北部至东南边缘上地幔顶部速度普遍偏低;随着深度的增加,低速区主要分布在羌塘、松潘—甘孜和云南西部地区,而印度大陆、塔里木、柴达木、鄂尔多斯和四川盆地均显示出较高的速度.上述速度分布与青藏高原及周边地区的岩石层结构和深部动力性质密切相关:其中羌塘地区的低速异常反映了青藏北部的地幔上涌和局部熔融,起因于印度大陆岩石层的向北俯冲;松潘—甘孜地区的低速异常与青藏东部的深层物质流动及四川盆地刚性岩石层的阻挡有关;而滇西地区的低速异常可能受到印缅块体向东俯冲作用的影响.以上三个区域构成青藏高原和周边地区的主要地幔异常区.相比之下,印度大陆、塔里木、柴达木、鄂尔多斯和四川盆地的高速异常反映了大陆构造稳定地区的岩石层地幔特点.根据速度变化推测,地幔上涌和韧性变形并非贯穿整个青藏高原,而是主要集中在羌塘、松潘—甘孜和滇西地区,上述构造效应不仅导致岩石层厚度减薄且引发了火山和岩浆活动.  相似文献   

14.
Seismic anisotropy of upper mantle in eastern China   总被引:6,自引:0,他引:6  
Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation. Supported by Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06), Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100), China Digital Earthquake Observation Network Project “North China Seismic Array”, and National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)  相似文献   

15.
利用甘肃和青海两省固定宽频带地震台记录的远震波形资料,挑选高质量SKS震相,联合使用最小切向能量方法和旋转互相关方法获得230对高信噪比分裂参数;同时对接收函数中Pms震相随方位角的变化进行拟合,得到了24个台站的地壳各向异性分裂参数.整个区域SKS分裂快波方向均值为123°,Pms分裂快波方向均值为132°,且大部分区域SKS、Pms快波方向与地表构造走向相一致,说明青藏高原东北缘以岩石圈垂直连贯变形为主,地壳上地幔相互耦合.SKS、Pms分裂时差均值分别为1.0s和0.6s,显示地壳各向异性对于SKS分裂时差有较大贡献.昆仑断裂附近Pms、SKS分裂快波方向与昆仑断裂走向基本一致,说明昆仑断裂可能是岩石圈尺度深大断裂;而阿尔金断裂东缘二者快波方向显著差异意味着阿尔金断裂在东缘可能仅为地壳尺度的断裂.  相似文献   

16.
内蒙古阿巴嘎地区壳幔经历强烈变形,岩石圈变形机制尚不明确.利用布设在研究区的32个流动地震台站所记录到的远震剪切波数据,测量得到120对各向异性参数和113个无效分裂结果.结果表明,研究区快慢波延迟时间变化范围为0.4~1.4s,平均0.77±0.21s;各向异性快波方向变化范围为N101°E-N45°W.其中一组快波偏振方向为N82.0°E±12.3°,与区域内断裂走向平行,反映地幔矿物晶格定向排列;另一组快波方向集中位于华北克拉通内部,平均为N146.8°E±9.5°,平行于早白垩纪岩石圈伸展变形方向,推测由残留在岩石圈中的化石各向异性所引起.在研究区北部部分台站,只观测到无效分裂而没有观测到有效分裂结果,可能存在局部热地幔物质上涌.  相似文献   

17.
The North China Craton (NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods: (1) Late Paleozoic to Early Jurassic (~170 Ma); (2) Middle Jurassic to Early Cretaceous (160–140 Ma); (3) Early Cretaceous to Cenozoic (140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period, the subduction and closure of the Paleo- Asian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression (Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range province by the Mesozoic magmatic plutons and NE-SW trending faults. With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle (SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weak zones (i.e., cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted (~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by (1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling. Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment; (2) then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton, or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.  相似文献   

18.
上地幔俯冲板块的动力学过程:数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
大洋板块俯冲到地幔转换带,进而可形成不同的形态:板块可以停滞在660km不连续面,抑或穿过地幔转换带进入下地幔.这些不同的俯冲模式可进一步影响到海沟的运动.为更好地理解上地幔中俯冲板片的变形行为以及俯冲过程与海沟运动之间的关系,本文通过建立一系列高精度二维热-力学自由俯冲的数值模型,揭示了俯冲板块在上地幔中的变形方式及其与地幔转换带之间的相互作用过程.模拟结果显示,在俯冲板块与地幔转换带的相互作用过程中,其动力学过程可以分为以海沟后撤主导、海沟前进主导以及稳定型海沟等三种主要动力学类型.对于年龄较老,厚度较大的俯冲板块容易形成海沟后撤型俯冲,俯冲板块停滞在660km不连续面.相反,年龄较小,塑性强度较小的板块容易形成海沟前进型俯冲,俯冲板块穿越660km不连续面.  相似文献   

19.
青藏高原P波速度层析成像与岩石圈结构   总被引:1,自引:0,他引:1       下载免费PDF全文
利用中国西部地震台网的数据,通过体波层析成像反演了青藏高原及邻域的三维P波速度结构.根据地壳和上地幔的速度变化和构造特征,重点讨论了下地壳流动、地幔上涌、岩石圈减薄以及与藏北新生代火山岩和藏南裂谷系的关系等问题.分析表明,青藏高原中、下地壳平均速度偏低,低速区主要分布在拉萨和羌塘块体内部,随着深度的增加逐渐扩大到松潘—甘孜块体.上述低速区之间多被高速带分隔,暗示地壳中、下部的韧性变形被限制在特定的区域,不太适于产生贯穿整个青藏高原的大规模横向流动.此外,地幔上涌也并非普遍发生于整个青藏高原,而是集中在羌塘、松潘—甘孜以及喜马拉雅东构造结附近,导致上述区域的岩石圈地幔较薄,并且伴生火山活动和岩浆作用.此外,由于印度大陆岩石圈在向北俯冲,板片下沉过程中引起地幔上涌,热流物质有可能上升进入地壳,这一作用对藏北新生代火山岩和藏南裂谷系的形成以及中、下地壳的韧性变形产生了明显的影响.  相似文献   

20.
Based on the polarization analysis of teleseismic SKS waveform data recorded at 49 seismic stations in Capital Area Seismograph Network,the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by using the grid searching method of minimum transverse energy and the stacking analysis method,and then we acquired the image of upper mantle anisotropy in Capital area.In the study area,the fast-wave polarization direction is basically WNW-ESE,and the delay time falls into the interval from 0.56 s to 1.56 s.The results imply that the upper mantle anisotropy in Capital area is mainly caused by the subduc-tion of the Pacific plate to Eurasian plate.The subduction has resulted in the asthenospheric material deformation in Capital area,and made the alignment of upper mantle peridotite lattice parallel to the deformation direction.And the collision between the Indian and Eurasian plates made the crust of western China thickening and uplifting and material eastwards extruding,and then caused the upper mantle flow eastwards,and made the upper mantle de-formation direction parallel to the fast-wave direction.The deformation model of the crust and upper mantle is possibly vertically coherent deformation by comparing the fast-wave polarization direction with the direction of lithospheric extension and the GPS velocity direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号