首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
喜马拉雅东构造结及周边地区地壳各向异性特征   总被引:1,自引:0,他引:1  
利用喜马拉雅东构造结及周边地区的48个宽频带地震台站记录的远震波形数据,通过Pms波分裂测量得到了 295对地壳各向异性横波分裂参数,获得了研究区的地壳各向异性图像.喜马拉雅东构造结的快波偏振方向主要为NE-SW方向,周边地区的快波偏振方向呈现出绕东构造结顺时针旋转的趋势.Pms波分裂的慢波延迟时间范围为0.11~0.30 s,平均值为0.24 s.对比分析研究区内Pms波分裂、近震直达S波分裂和远震SKS波分裂的结果发现,上地壳各向异性对Pms波分裂影响有限,地壳各向异性主要来自于中下地壳矿物和熔体的定向排列;地壳各向异性对SKS波分裂影响较小,SKS波分裂主要反映了上地幔的各向异性特征;Pms波分裂的快波偏振方向与近震直达S波分裂和远震SKS波分裂的快波偏振方向表现出较好的一致性,并且与地表构造和变形特征具有较好的相关性,反映了喜马拉雅东构造结及周边地区的岩石圈变形可能为垂直连贯变形模式.  相似文献   

2.
青海地区S波分裂研究   总被引:5,自引:5,他引:0       下载免费PDF全文
本文利用国家地震台网及中国地震局“十五”期间在青海布设的30个宽频带地震台站记录到的远震波形数据,分别采用最小能量法和旋转相关法对SKS、SKKS和PKS波震相进行了偏振分析,计算了台站下方介质的各向异性分裂参数:快波的偏振方向(φ)和慢波延迟时间(δt).本文研究结果表明,研究区多数台站下方的地震各向异性参数都表现出随方位角变化而变化的特征,可以用双层各向异性模型来解释.其中上层各向异性的快波偏振方向位于N65°E~N95°E之间,可能与中下地壳物质的流动有关;而下层各向异性的快波偏振方向位于N105°E~N135°E之间,可能为祁连块体NEE向的推移及导致的岩石圈缩短有关.此外,我们还发现,与周边的台站下方各向异性分裂参数相比,昆仑断裂附近两个台站GOM和DAW的各向异性特征急剧变化,其快波方向都与该断层近乎平行,这很可能暗示昆仑断裂已经切穿整个岩石圈;阿尔金断裂附近两个台站(LEH和HTG)无效分裂事件的方位分布与阿尔金断裂走向缺乏相关性,我们推测研究区内阿尔金断裂可能为地壳尺度的断裂.  相似文献   

3.
贝加尔裂谷区地壳上地幔复杂的各向异性及其动力学意义   总被引:1,自引:3,他引:1  
位于西伯利亚板块东南缘的贝加尔裂谷是最典型的大陆裂谷之一,其形成的动力机制与演化过程一直是地学界争论的焦点.本研究使用一种改进的横波分裂测量方法——全局最小切向能量法,对研究区宽频带固定台站ULN和TLY记录的SKS震相和接收函数PmS震相进行分裂测量,得到了裂谷地区地壳和上地幔的各向异性属性.ULN台的SKS分裂测量结果表明,台站下方存在双层各向异性结构,其中,上层的快波偏振方向为N74°E,快、慢波分裂时差为0.80 s,下层的快波偏振方向为N128°E,快、慢波分裂时差为0.80 s;PmS震相分裂测量结果表明,台站下方地壳内存在单层各向异性结构,其快波偏振方向为N77°E,与SKS分裂测量的上层各向异性的快波偏振方向相近,快、慢波分裂时差为0.26 s,这说明SKS分裂测量的上层各向异性同时包含了地壳和地幔岩石圈.对TLY台进行SKS分裂测量时发现,台站下方上地幔结构表现出横向非均匀性:当反方位角<90°时,快波偏振方向在N60°E左右,快、慢波分裂时差为1.27 s;当反方位角>90°时,快波偏振方向约为N120°E,快、慢波分裂时差为1.40 s;PmS震相分裂测量没有获得有效的结果,并且不同方位的PmS震相到时基本一致,说明TLY台下方地壳结构接近各向同性.根据分裂测量结果,结合贝加尔裂谷区的构造演化过程,得到以下结论:(1)ULN台双层各向异性的上层主要是岩石圈原始结构的反映,并且存在地壳与地幔岩石圈的一致性形变,而下层指示着现今软流圈地幔的流动;(2)由于刚性的西伯利亚克拉通的阻挡,地幔流动方向在克拉通南缘发生了偏转,在深部绕克拉通边缘流动,因此形成了TLY台下方上地幔结构的横向变化.  相似文献   

4.
蒙古中南部地区地壳各向异性及其动力学意义   总被引:1,自引:1,他引:0       下载免费PDF全文
利用蒙古中南部地区布设的69套宽频带数字地震仪2011年8月—2013年7月记录的远震事件,使用时间域反褶积方法提取接收函数,并挑选高质量Pms震相,通过改进的剪切波分裂方法对研究区地壳各向异性参数进行了研究,最终获取了1473对各向异性参数.经过统计分析,有48个台站可以归纳出两个方向的各向异性,11台站得到单个方向的各向异性,而剩余10个台站各向异性方向比较发散.结果显示,各向异性在蒙古中南部地壳中呈不均匀分布,有54个台站得到了NE-SW向各向异性,快波偏振方向平均值为N58°E±16°,与最大水平主应力σHmax方向和区域内主要断层走向一致,说明这部分地壳各向异性的主要成因存在于上地壳,可能与流体填充的微裂隙有关.而NW-SE向各向异性在53个台站被观测到,各向异性方向变化范围平均N132°E±16°,与研究区大部分SKS分裂快波方向具有较好的一致性,说明下地壳成岩矿物晶体定向排列是各向异性的主要成因.研究区地壳各向异性的分层特征总体上支持岩石圈受到NE-SW向挤压的动力学模型.  相似文献   

5.
维西—乔后断裂是滇西地区一条典型的活动断裂,沿该断裂历史上多次发生过中强震,周边地区地壳变形强烈.地震各向异性是了解地球内部变形方式的重要手段,Moho面P-to-S转换波(Pms)的到时为探测具有水平对称轴的地壳各向异性提供了一种有力的诊断工具.本文利用大理及周边地区的68个宽频地震台站记录的远震三分量波形提取P波接收函数,并从叠加的P波接收函数里拾取不同后方位角对应的Pms震相到时,用网格搜索方法拟合该到时以获取地壳各向异性参数.获得的59个Pms震相的分裂参数表明,Pms分裂时间在0.06±0.06 s到0.97±0.10 s之间,平均值为0.50±0.07 s.优势快波偏振方向为SE-NW,地壳变形总体受控于区域的走滑运动.然而,在漾濞县及周边地区,快波偏振方向变为SW-NE,本文认为这主要由下地壳软弱物质向西南流动所致,同时也是导致维西—乔后断裂南段表现出正断层活动特征的原因.  相似文献   

6.
通过分析青藏高原东南缘新部署的密集地震台阵的接收函数得到了该区域的地壳各向异性。所测量的接收函数Pms波的分裂时间分布在0.02~0.88s,平均分裂时间为0.28s,这远大于近震S波分裂得到的云南地区上地壳(15km以上)累积的分裂时间,表明研究区地壳各向异性主要来自中下地壳(15km以下)。各次级块体内的Pms波的快波偏振方向与主压应力方向基本一致,在一些大型走滑断裂带附近,如小江断裂带、红河断裂带和澜沧江断裂带,快波偏振方向与断裂带走向基本平行。分裂时间在小江断裂带两侧表现出东侧小,西侧大的特征。在块体内部,由于韧性的中下地壳发生差异运动,从而引起物质沿运动方向排列,产生各向异性。小江断裂带、红河断裂带和澜沧江断裂带附近地壳中分布的低速带、高泊松比和高热流表明断裂带下方可能存在部分熔融,因此在这些深的大走滑断裂带下方的各向异性快波方向沿着断裂带走向分布,主要是由于矿物和熔体在断裂带的走滑运动下发生定向排列引起,说明走滑运动控制着断裂带下方地壳的变形模式。对比Pms波与SKS波分裂模式,本文更倾向于认为研究区地壳与上地幔变形解耦。  相似文献   

7.
新疆地区S波分裂研究h   总被引:1,自引:0,他引:1       下载免费PDF全文
利用国家地震台网及中国地震局ldquo;十五rdquo;期间在新疆地区布设的宽频地震台站记录到的远震波形数据,采用最小能量法和旋转相关法分别对SKS、 SKKS震相进行了偏振分析,计算了台站下方介质各向异性的分裂参数:快波的偏振方向(phi;)和慢波延迟时间(delta;t).研究结果表明,塔里木盆地北缘、天山造山带和阿尔泰造山带大多数台站的快波偏振方向与台站下方构造走向方向接近,其快慢波分裂延迟介于0.8——1.8 s之间. 这与印度 欧亚碰撞导致的岩石圈缩短有关.相比而言,塔里木盆地和准噶尔盆地内部的各向异性强度明显要弱,表明其自前寒武形成以来并没有经历强烈的变形作用.阿尔金断裂带附近台站下方各向异性快波方向与断裂带的走向具有很强的相关性,表明该断裂已经切穿整个岩石圈.   相似文献   

8.
基于青藏高原东北缘甘肃区域台网41个宽频带地震台站的远震记录资料,通过PKS、SKS和SKKS震相的剪切波分裂分析,获取了台站下方介质的各向异性分裂参数,得到该地区上地幔各向异性分布图像,并结合GPS速度场和地壳剪切波各向异性分析青藏高原东北缘各向异性形成机制及壳幔各向异性特征.分析结果认为,在阿尔金断裂带西侧,各向异性快波偏振呈NWW-SEE方向,与断裂带走向有一定夹角,与塔里木盆地向柴达木盆地俯冲方向一致,说明该地区上地幔物质变形主要受古构造运动的影响,属于"化石"各向异性.在祁连山-河西走廊构造区,XKS快波偏振呈NW-SE方向,一致性较好,与区域断层走向方向相同;由区域小震的地壳剪切波分裂分析得到的地壳剪切波快波偏振在该区域呈NE-SW方向,与相对于稳定欧亚大陆GPS运动速率一致,地壳和地幔快波偏振方向的差异表明壳幔变形可能有不同的形变机制.在陇中盆地及其周缘,由于处于活跃青藏地块与稳定鄂尔多斯地块之间的过渡带,相对于其他区域具有更加复杂的构造背景,地壳快波偏振和地幔快波偏振总体上呈NWW-SEE方向,说明壳幔变形机制可能相同;但不同台站结果之间存在一定离散性,推测是由于受局部构造特征差异性造成.  相似文献   

9.
基于横跨青藏高原东缘龙门山造山带的链式宽频带台阵数据,通过系统拾取28个台站观测到的147个远震事件所对应的Pms转换波分裂参数,获得了青藏高原东缘强烈盆山相互作用区不同构造域的地壳各向异性特征.结果表明,青藏高原东缘盆山相互作用区的地壳各向异性具有明显的分区性,松潘-甘孜地块的地壳各向异性强度(分裂时差约0.28 s...  相似文献   

10.
王琼  高原  石玉涛 《地球物理学报》2015,58(11):4068-4078
青藏高原东南缘地区是现今地壳形变和地震活动最强烈的地区之一,也是研究青藏高原现今变形机制和构造演化规律的重要区域.本研究使用云南区域地震台网的55个宽频带地震台站连续地震背景噪声数据,采用双台站互相关方法获得Rayleigh(瑞利)面波经验格林函数,提取相速度频散曲线,反演得到云南地区周期5~34s范围内方位各向异性分布图像.反演结果揭示:短周期(5~12s)Rayleigh面波快波优势方向与区域断裂走向有很好的一致性,快波方向随着断裂走向的变化而变化.周期16~26s快波优势方向与反映上地壳特性的5~12s图像总体图像相似,但细节略有不同.其中,滇中块体内易门断裂和滇中块体内东侧的普渡河断裂附近,各向异性快波方向从NS向NW方向旋转;易门断裂以西呈NW向.这反映了青藏高原物质东流和川滇块体受到青藏块体的南东向挤压作用.周期30~34s范围的各向异性,滇缅泰块体和印支块体,快波优势方向为NS和NNW向;而在滇中块体内部,各向异性快波方向呈顺时针旋转变化,可能与青藏高原物质向东逃逸有关.本文还开展了与体波各向异性的对比分析,通过与近震S波分裂、Pms转换波分裂和远震SKS、PKS和SKKS(以后简称为XKS)分裂的对比研究,发现随着周期的增大,得到的快波优势方向与XKS剪切波快波偏振方向趋向一致,与地壳快剪切波偏振方向呈一定夹角.本研究认为,青藏高原东南缘地区壳幔各向异性具有不同的特征和形成机制.  相似文献   

11.
在各向异性地壳中,来自Moho的P-to-S转换波(Pms)的到时不仅取决于入射角和地壳厚度,而且还随地震事件方位角而变化.地处青藏高原东南缘的川滇地区,地壳变形十分强烈.本文利用川滇地区的108个固定台站记录的远震三分量地震波形数据提取台站下方的P波接收函数,并把接收函数被校正到了同一参考震中距处(例如67°).然后按后方位角10°为间隔将接收函数叠加成一道信号以增强信噪比,并从叠加信号里拾取不同后方位角对应的Pms相的观测到时.在快波极化方向和分裂时间构成的解的平面上,能使观测到时与理论到时之差最小的点即为所求的分裂参数的位置.合成地震图和实际观测数据的实验表明,这个方法不但稳定性较好,而且误差估计也较小.我们从108个台中获得了96个Pms相的分裂参数,结果表明,川滇地区地壳各向异性十分强烈,Pms相分裂时间在0.05s±0.06s到1.27s±0.10s之间,平均值为0.54s±0.12s.地壳各向异性的快波极化方向与地表GPS速度场的差异性表明,印支块体的上下地壳之间是解耦的,而川滇菱形块体北部、松藩—甘孜和四川盆地的上下地壳之间是耦合的.然而,川滇菱形块体南部,地壳变形主要受控于小江断裂和金沙江—红河断裂.  相似文献   

12.
青藏高原中部地壳和上地幔各向异性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
张智  田小波 《地球物理学报》2011,54(11):2761-2768
对布设于青藏高原中部INDEPTH-III宽频带数字地震台阵的41个台站记录的远震体波资料所提取出的P波接收函数和SKS波形资料做偏振分析,并采用以误差为权的叠加分析方法求得每一个台站的Pms和SKS快波偏振方向和快慢波的时间延迟,获得了从拉萨块体中部,经喀喇昆仑-嘉黎断裂系和班公湖-怒江缝合带,到羌塘块体中部的地壳和...  相似文献   

13.
Over the past 10 years,the number of broadband seismic stations in China has increased significantly.The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland.Based on teleseismic SKS and SKKS phases recorded in the seismic stations,we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting.We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers.From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs.These splitting parameters reveal the complexity of the upper mantle anisotropy image.Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland,with an average shear-wave time delay of 0.95 s;the anisotropy in the western region is slightly larger(1.01 s)than in the eastern region(0.92 s).On a larger scale,the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode,i.e.the crust-lithospheric mantle coherent deformation.In eastern China,the average fast-wave direction is approximately parallel to the direction of the absolute plate motion;thus,the upper mantle anisotropy can be attributed to the asthenospheric flow.The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions,where the anisotropy images are more complicated,exhibiting"fossil"anisotropy and/or two-layer anisotropy.The collision between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland,while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.  相似文献   

14.
The receiver function which carries the information of crustal materials is often used to study the shear-wave velocity of the crust as well as the crustal anisotropy. However, because of the low signal-to-noise ratio in Pms(P-to-S converted phase from the Moho), the crustal anisotropy obtained by shear-wave splitting technique for a single receiver function usually has large errors in general. Recent advance in the analysis method based on Pms arrival time varying with the back-azimuth change can effectively overcome the above defects. Thus in this paper, we utilize the azimuth variations of the Pms to study the crustal anisotropy in Chongqing region for the first time. According to the earthquake catalogue provided by USGS, seismic waveform of earthquakes with magnitude larger than 5.5 and epicenter distance range of 30°~90° between January 2015 and December 2016 are collected from 14 broadband seismic stations of Chongqing seismic network. We carry out the bootstrap resampling to test the reliability of the radial maximum energy method for the observation data. In addition, we also applied the receiver function H-Kappa analysis in this paper to study the crustal thickness and Poisson's ratio. Our results show the crustal thickness ranges from 40~50km, and there is a thin and thick crust in the southern and northern Chongqing, respectively. The crustal average Poisson's ratio ranges from 0.23~0.31, the Poisson's ratio reaches the maximum value in the central part of Chongqing, while the Poisson's ratio in the northern and southern parts of Chongqing is obviously low. We obtain the crustal anisotropy from 9 stations in total. The delay time of crustal anisotropy distributes between 0.08s and 0.48s, with the average value of 0.22s. Among them, the CHS, QIJ and WAZ stations in central Chongqing have relatively large crustal delay time(>0.3s), followed by ROC station in the western Chongqing(0.25s), while the delay time in CHK station in northern Chongqing and WAS station in southern Chongqing are 0.08s, showing relatively weak crustal anisotropy. The fast polarization directions(FPDs)also change obviously from south to north. In southern Chongqing, FPDs are dominant in NNE-SSW and NEE-SWW, while the FPDs in WAZ station change to NWW-SEE, and the FPDs appear to be NW-SE in CHK in the northern Chongqing. In general, the FPDs are sub-parallel to the strikes of faults in most areas of Chongqing areas. Combined with other results from GPS observations, tectonic stress field and XKS splitting measurements, the main conclusions can be suggested as following:The cracks preferred orientation in the upper crust is not the main source of crustal anisotropy in Chongqing area. The crust and lithospheric upper mantle in the eastern Sichuan fold belt(ESFB)and Sichuan-Guizhou fault fold belt(SGFFB)are decoupled, and the deformation characteristics in the north and south parts of ESFB and SGFFB is different. The complex tectonic deformation may exist beneath the mountain-basin boundary, causing the fast directions of crustal anisotropy different from that in other areas of ESFB and SGFFB. The faults with different strikes may weaken the strength of average crustal anisotropy in some areas. The crustal deformation in southern Dabashan nappe belt(DNB)may be mainly controlled by the fault structure.  相似文献   

15.
张艺  高原 《地球物理学报》2017,60(6):2181-2199
利用中国地震科学台阵第一期(2011-01-2014-06)及部分中国地震科学台阵第二期(2013-02-2015-12)的流动地震台阵记录到的小震波形资料,运用剪切波分裂系统分析(SAM)方法,分析南北地震带的地壳各向异性,对剪切波分裂参数所反映的区域应力环境及构造特征,以及区域内主压应力方向与断裂分布的关系展开讨论.研究结果表明,南北地震带快剪切波偏振方向自北向南由NE向逐渐转变为NNW向,与南北地震带区域主压应力的方向变化具有一致性.区域内分布的大量NE及WNW或NW向断裂构造同样对快波偏振方向有比较大的影响,位于走滑断裂附近的台站,其快波方向与断裂走向大致平行,部分位于走滑断裂附近的台站其快波方向几乎垂直于断裂走向,而与构造应力场方向一致性较好.个别台站表现出复杂快波优势方向特征,反映出研究区内构造环境的复杂性.慢波时间延迟结果显示,南北地震带南段的平均时间延迟高于北段,反映了受印度板块和欧亚板块的碰撞挤压作用,南段地壳介质各向异性程度更大,构造变形更加剧烈.对比南北地震带上地幔各向异性特征,推测在川滇菱形块体内部可能存在复杂的壳幔耦合现象,地壳剪切波分裂除了反映区域应力特征,还可以揭示出区域构造信息.  相似文献   

16.
The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms trav-ersing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most re-gions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.  相似文献   

17.
In this paper, the data of earthquake events of magnitude MS6.0 and above produced in Hohhot Seismic Station from 2008 to 2015 and the data of ML ≥ 1.0 seismic events from 2015 to 2016 in Horinger Seismic Station and the surrounding mobile stations in southern Hohhot are selected. Using Splitlab and SAM software, the spin-correlation method, the least-energy method and the cross-correlation coefficient method are used to analyze the teleseismic and near-seismic phases (SKS, S). The results of this study are in good agreement with the results previously obtained by other researchers. The study of teleseismic SKS splitting reflects the characteristics of the anisotropy of the upper mantle beneath Hohhot, that is, the anisotropy of the upper mantle shows NW, which reflects "fossil" Anisotropy, mainly in the continental structure of stable units and preserves the history of mantle deformation information. The crustal anisotropy reflected by the near-earthquake S-wave splitting study is similar to that of the active fault zone, trending NE as a whole and is consistent with the tectonic stress field background of the northeastern margin of Ordos block.  相似文献   

18.
本文对布设在华北克拉通东西两块体交界区域的宽频带流动地震观测台阵和部分固定台站的远震波形记录开展了SKS波分裂研究.结果显示,鄂尔多斯块体内部的各向异性比较弱,剪切波分裂导致的时间延迟一般小于0.7s.鄂尔多斯块体东缘的山西断陷带和太行山以及华北平原西部均表现出了比较强的各向异性,时间延迟大于1.0s.特别是在太行山地区观测到的ENE趋向的快波偏振方向明显不同于鄂尔多斯块体和华北平原地区的近E-W和ESE方向的快波偏振方向.在华北克拉通东西两块体交界过渡带的太行山地区观测到的显著上地幔各向异性及变化可能对应于围绕鄂尔多斯块体东南角的局部软流圈绕流,而后者可能起因于鄂尔多斯块体的逆时针旋转以及青藏高原软流圈沿秦岭大别造山带向东的流动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号