首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The tectonic position of Egypt in the northeastern corner of the African continent suggests that it may possess significant geothermal resources, especially along its eastern margin. The most of the thermal springs in Egypt are located along the shores of Gulf of Suez and Red Sea. These springs are probably tectonic or nonvolcanic origin associated with the opening of the Red Sea—Gulf of Suez rifts, where the eastern shore of the Gulf of Suez is characterized by superficial thermal manifestations including a cluster of hot springs with varied temperatures. Hammam Faraun area consists of the hottest spring in Egypt where the water temperature is 70°C. Conceptual as well as numerical models were made on the Hammam Faraun hot spring based on geological, geochemical, and geophysical data. The models show that the heat source of the hot spring is probably derived from high heat flow and deep water circulation controlled by faults associated with the opening of the Red Sea and Gulf of Suez rifts.  相似文献   

2.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

3.
The geothermal regime beneath the Barramiya-Red Sea coast area of the Central Eastern Desert of Egypt has been determined by using the Curie point depth, which is temperature dependent. This study is based on the analysis of aeromagnetic data. The depth to the tops and centroid of the magnetic anomalies are calculated by power spectrum method for the whole area. The result of this investigation indicates, two new maps of the Curie point depth (CPD) and the surface heat flow (q) maps of the study area. The coastal regions are characterized by high heat flow (83.6 mW/m2), due to the geothermic nature of the region, and shallow Curie depth (22.5 km), where (CPD) depends on the tectonic regime and morphology in the eastern part of the area. The western portion of the studied area has a lower heat flow (<50 mW/m2) and deeper Curie depth (∼40 km), due to the existence of a large areal extent of negative Bouguer anomaly in the NE-SW direction. In addition to its bordering to the Red Sea margin, such high heat flow anomaly is associated with the increased earthquake swarms activity in the Abu Dabbab area.  相似文献   

4.
The potential field data are considered the main supporting factor in the geophysical exploration process for detecting and evaluating the subsurface structures. Therefore, a detailed land magnetic survey was performed in an area subjected to seismic investigations. The main target of this study was to detect the deeper subsurface structures and to investigate their possible relationships with earthquake activity.The RTP aeromagnetic map was used to detect the regional extension of the structures interpreted from the land magnetic survey. The RTP land and aeromagnetic maps were interpreted by the filtering technique, least-squares separations, tectonic trend analysis, spectral analysis, Werner method, Euler method, and 2D techniques. The results show that the main tectonic trends are 35° N–45° W, 45° N–65° E, E–W, and Aqaba.Moreover, two seismic lines, WQ85-31B and 127, were interpreted, and their location was matched with the deduced tectonic map. The results show great matching between the location of the faults deduced from both the geomagnetic and seismic data. They agree completely with the well logging data.Furthermore, these structures are correlated with the earthquake activities recorded by the Egyptian National Seismological Network (ENSN). The correlation implies that the studied area is more stable than other adjacent areas in the northern parts of Egypt close to the Mediterranean Sea and the Nile River Delta.  相似文献   

5.
Gemsa has been chosen as the site for one of a new generation of power stations along the south-western margin of the Gulf of Suez. This site has been affected by a number of destructive earthquakes (Mw> 5), in addition to large number of earthquakes with magnitudes of less than 5. In this study seismic activities in the region were collected and re-evaluated, and the main earthquake prone zones were identified. It is indicated that this site is affected by the southern Gulf of Suez, northern Red Sea and Gulf of Aqaba source zones. The southern Gulf of Suez source zone is the nearest to the proposed site. The stochastic simulation method has been applied to estimate the Peak GroundAcceleration at the site of the proposed Gemsa power plant. It was noticed that the pseudo-spectral acceleration (PSA) reaches 175 cm/sec2 resulting from the southern Gulf of Suez seismic source. In addition, the response spectrum was conducted with a damping value of 5% of the critical damping, and the predominant period reached 0.1sec at the site. These results should be taken into consideration by civil engineers and decision-makers for designing earthquake resistant structures.  相似文献   

6.
The Hammam Faroun has a particular importance due to its geothermal activity which constitutes the main geothermal resource of Egypt. The area is located on the Sinai Peninsula, a subplate bounded by two seismically active structural zones along the Gulf of Suez and Gulf of Aqaba. High-resolution ground-based gravity and magnetic data are available for the entire Hammam Faroun area, acquired as part of a national project to explore for mineral, geothermal, and hydrocarbon resources. Gravity and magnetic data were analyzed using Source Edge Detection and Source Parameter Imaging (SPI) techniques to image subsurface structures. These analyses show that the area is characterized by a set of northwest-striking faults lying parallel to the Gulf of Suez. Orthogonal patterns are also present, possibly related to rifting of the Gulf of Suez. Depth analysis using the SPI method indicates that surface faults extend to 5-km depth. Analysis of potential-field data elucidates the structurally complex subsurface structure of the Hammam Faroun area.  相似文献   

7.
The western part of Yemen is largely covered by Tertiary volcanics and is bounded by volcanic margins to the west (Red Sea) and the south (Gulf of Aden). The Oligo–Miocene evolution of Yemen results from the interaction between the emplacement of the Afar plume, the opening of the Red Sea, and the westward propagation of the Gulf of Aden. Structural and microtectonic analyses of fault slip data collected in the field reveal that the volcanic margins of Yemen are affected by three main extensional tectonic events. The chronological order of these events is as follows: first E–W extension was associated with the emplacement of volcanic traps of Yemen, then NE–SW extension was related to the Red Sea rifting, and finally, the volcanic margin was submitted to N160°E extension, perpendicular to the overall trend of the Gulf of Aden, which we interpret as induced by the westward propagation of the oceanic ridge of the Gulf of Aden.  相似文献   

8.
The average seismic strain rate is estimated for the seismotectonic zone of the northern/central parts of the Gulf of Suez. The principal strain rate tensor and velocity tensor were derived from a combination of earthquake focal mechanisms data and seismic moment of small-sized earthquakes covering a time span of 13 years (1992–2004). A total of 17 focal mechanism solutions have been used in the calculation of the moment tensor summation. The local magnitudes (MLs) of these events range from 2.8 to 4.7. The analysis indicates that the dominant mode of deformation in the central and northern parts of the Gulf of Suez is extension at a rate of 0.008 mm/year in N28°E direction and a small crustal thinning of 0.0034 mm/year. This low level of strain means that this zone experienced a little seismic deformation. There is also a right lateral shear motion along the ESE–WNW direction. This strain pattern is consistent with the predominant NW–SE normal faulting and ESE–WNW dextral transtensive faults in this zone. Comparing the results obtained from both stress and strain tensors, we find that the orientations of the principal axes of both tensors have the same direction with a small difference between them. Both tensors show a predominantly extensional domain. The nearly good correspondence between principal stress and strain orientations in the area suggests that the tectonic strength is relatively uniform for this crustal volume.  相似文献   

9.
The bottom of the magnetized crust determined from the spectral analysis of magnetic anomaly is interpreted as a level of the Curie point isotherm. A spectral analysis technique was used to estimate the depth of the magnetic anomalies sources (Curie point depth analysis) of the eastern shore of the Gulf of Suez, Egypt. The depth to the tops and centers of the magnetic anomalies are calculated by azimuthally averaged power spectrum method for the whole area. The results obtained suggests from this study showed that the average depth to the top of the crustal block ranges between 1.15 and 1.9 km, whereas the average depth to the center of the deepest crustal block ranges between 9.1 and 12.7 km. Curie point depths in the study area range between 14.5 km in the northwestern part of the study area and 26 km in the southeastern part of the study area. The results imply a high geothermal gradient (34.7 °C/km) and corresponding high heat flow value (72.87 mW/m2) in the northwestern part of the study area. The southeastern part of the study area displays a low geothermal gradient (24.26 °C/km) and low heat flow value (50.9 mW/m2). These results are consistent with the existence of the possible promising geothermal reservoir in the eastern shore of the Gulf of Suez especially at Hammam Faraun area.  相似文献   

10.
In this paper, we present a case study of structural mapping by applying the 3D Euler method to the high-resolution aeromagnetic data that was collected in the west central Arabian Shield region and the coastal region of the central Red Sea in Saudi Arabia. We show the 3D Euler deconvolution algorithm and apply it to magnetic potential field data from the west Central Arabian Shield and the Central Red Sea. The solution obtained with 3D Euler deconvolution gives better-focused depth estimates, which are closer to the real position of sources; the results presented here can be used to constrain depth to active crustal structures (volcanisms) for the study area. The results indicated that the area was affected by sets of fault systems, which primarily trended in the NNW–SSE, NW–SE, EW, and NE–SW directions. Moreover, estimated Euler solution map from aeromagnetic data delineated also the boundaries of shallow, small, and confined magnetic bodies on the offshore section of the study area. These nearly exposed basement intrusions are most likely related to the Red Sea Rift and may be associated with structures higher up in the sedimentary section. These volcanic bodies are extended to the continental part (onshore) of the west central Arabian Shield, particularly beneath both sides of the Ad Damm fault zone. This extension verifies that the fault was largely contemporaneous with a major period during the extension of the Red Sea Basin. Moreover, according to the distribution of circular magmatic-source bodies (circular-shaped ring dikes) that resulted from this study, we can state that the clustering of most earthquakes along this fault may most likely be attributed to the active mantle upwelling (volcanic earthquakes), which are ultimately related to volcanic processes. Furthermore, the oceanic crustal structures near and in the Red Sea offshore regions were also estimated and discussed according to the ophiolite occurrences and further opening of the Red Sea. Our results are largely comparable with studies of previous crustal sections, which were performed along the Red Sea Rift and the Arabian Shield. As a result, the areas above these anomalies are highly recommended for further geothermal study. This example illustrates that high-resolution aeromagnetic surveys can greatly help delineating the subsurface active structures in the west central Arabian Shield and the middle coastal region of the Red Sea of Saudi Arabia.  相似文献   

11.
The north Egyptian continental margin has undergone passive margin subsidence since the opening of Tethys, but its post-Mesozoic history has been interrupted by tectonic events that include a phase of extensional faulting in the Late Miocene. This study characterizes the geometry and distribution of Late Miocene normal faulting beneath the northern Nile Delta and addresses the relationship of this faulting to the north–northwestwards propagation of Red Sea–Gulf of Suez rifting at this time. Structural interpretation of a 2D grid of seismic reflection data has defined a Tortonian–Messinian syn-rift megasequence, when tied to well data. Normal fault correlations between seismic lines are constrained by the mapping of fault-related folds. Faults are evenly distributed across the study area and are found to strike predominantly NW–SE to NNW–SSE, with some N–S faults in the north. Faults are interpreted to be <10 km in length, typically in the range 3–6 km. This suggests that rifting in the northern Nile Delta did not proceed beyond a continental rift initiation phase, with distributed, relatively small-scale faults. This contrasts with the Gulf of Suez Rift, where faulting continued to a more evolved fault localization phase, with block-bounding faults >25 km in length. Results suggest that future studies could quantify fault evolution from rift initiation to fault linkage to displacement localization, by studying the spatial variation in faulting from the northern Nile Delta, south–southeastwards to the Gulf of Suez Rift.  相似文献   

12.
The present study is an attempt to determine the sedimentary cover, and structural trends in the central part of Sinai Peninsula, Egypt. This study has been implemented by the integration of gravity and magnetic methods. Gravity data has been used for 2D modelling along some profiles perpendicular to the main structural trends of the study area. Magnetic data will be analyzed to determine the depth to the basement surface. The depths obtained from magnetic data will be used as a control points in the gravity modelling in order to minimize the error and facilitate the iteration of the suggested models. The basement relief map from magnetic and gravity output has been produced. This map indicates that, the basement depths, generally, increases from south to north and from east to west direction of the study area. The sedimentary cover is about 1.5-2 km in the southern part and increases to more than 4 km in the northeastern and western parts and changes gradually in the other parts of the study area. Results of structural trend analysis indicate that, the study area is greatly affected by several structural trends; N-S, E-W, NW-SE, and NNE-SSW directions. These trends are associated with the Baltim fault trend, Tethyan trend, Gulf of Suez, and Aqaba trend, respectively.  相似文献   

13.
This article outlines geomorphological and tectonic elements of the Afar Depression, and discusses its evolution. A combination of far-field stress, due to the convergence of the Eurasian and Arabian plates along the Zagros Orogenic Front, and uplift of the Afar Dome due to a rising mantle plume reinforced each other to break the lithosphere of the Arabian–Nubian Shield. Thermal anomalies beneath the Arabian–Nubian Shield in the range of 150 °C–200 °C, induced by a rising plume that mechanically and thermally eroded the base of the mantle lithosphere and generated pulses of prodigious flood basalt since ∼30 Ma. Subsequent to the stretching and thinning the Afar Dome subsided to form the Afar Depression. The fragmentation of the Arabian–Nubian Shield led to the separation of the Nubian, Arabian and Somalian Plates along the Gulf of Aden, the Red Sea and the Main Ethiopian Rift. The rotation of the intervening Danakil, East-Central, and Ali-Sabieh Blocks defined major structural trends in the Afar Depression. The Danakil Block severed from the Nubian plate at ∼20 Ma, rotated anti-clockwise, translated from lower latitude and successively moved north, left-laterally with respect to Nubia. The westward propagating Gulf of Aden rift breached the Danakil Block from the Ali-Sabieh Block at ∼2 Ma and proceeded along the Gulf of Tajura into the Afar Depression. The propagation and overlap of the Red Sea and the Gulf of Aden along the Manda Hararo–Gobaad and Asal–Manda Inakir rifts caused clockwise rotation of the East-Central Block. Faulting and rifting in the southern Red Sea, western Gulf of Aden and northern Main Ethiopian Rift superimposed on Afar. The Afar Depression initiated as diffused extension due to far-field stress and area increase over a dome elevated by a rising plume. With time, the lithospheric extension intensified, nucleated in weak zones, and developed into incipient spreading centers.  相似文献   

14.
Gulf of Suez consists mainly of three tectonic provinces that are separated by two accommodation zones. The southern edge of the gulf is bordered by N–S faults which mark the transition between the shallow water, Suez Basin and the deep northern Red Sea Basin. The sensitivity of coda Q measurements with respect to geological differences in the crust is demonstrated in three regions with a large variety of tectonic and geologic properties. The estimation of coda Q (Qc) is performed for 370 local earthquakes recorded at 12 digital seismic stations during the period from 2000 to 2007. The magnitudes of the earthquakes between 1.5 and ~4.5 have been used at central frequencies 1.5, 3, 6, 9, 12, 15, 18, and 24 Hz through three lapse time windows 10, 20, 30 s starting at once and twice the time of the primary S wave from the origin time. The time domain coda decay method of the single isotropic scattering model is employed to calculate frequency-dependent values of coda Q. The Qc values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [Qc(f) = Qo(f/fo]. The observed coda Q indicates that the area is seismically and tectonically active with high heterogeneities. The variation of the quality factor Qc has been estimated at different regions to observe the effect of different tectonic province. The average frequency-dependent estimated relations of Qc vary from 65f1.1 to 96f0.9 at 10 to 30 s window length, respectively. The decreasing value of the frequency parameter with increasing lapse time shows that the crust acquires homogeneity with depth. The variation of Qc with the variations in the geologic and tectonic properties of the crust was investigated. The frequency exponent η might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Gulf of Suez, the obtained value of η?=?0.8?±?0.011, which might indicate a low level of tectonic activity compared with η?=?1.1?±?0.005 and 1.3?±?0.009 for the central and southern regions of the gulf.  相似文献   

15.
In March and April 1972, 380 gravity stations were established in the T.F.A.I. The data were reduced to Bouguer anomalies of 5 mGal isolines. Qualitative and quantitative interpretation based on the gravity map, on seismic data and on the magnetics and physiography of the area revealed that: The crust of the Gulf of Tadjura and the central part of the T.F.A.I. is strongly oceanized and is the direct continuation of the Sheba Ridge.To the north of the Gulf, at the Dankali Mountains, the crust increases in thickness and most probably contains sialic fragments, indicating the continuation of the Danakil Chains in the T.F.A.I.To the south, the structure is bordered by a continental block, the Aysha Horst. The oceanization is concentrated only in the area of deep injections, marked by gravity maxima, whereas the rest of the area is to be described as sub-continental. The crust is attenuated from south (Aysha Horst) to north (Red Sea), from 30 to 15 km in thickness.The pattern of the gravity anomalies shows clearly liniations only along the coasts of the Gulf of Tadjura and the Straits of Bab el Mandeb. Inland the field breaks up into relative minima and maxima, indicating the fragmentation of the crust and the ‘triple junction’ nature of the area.The tectonic process is that of extension, with normal faults having maximum displacements at the northern border of the Gulf of Tadjura.The uppermost mantle has low velocity and density values due to thermal processes in the expanding zone. The state of the upper-mantle material must be that of partial melting due to high temperatures of the order of 800° to 1,000° C at about 15 km depth.  相似文献   

16.
Seismicity of Sinai Peninsula, Egypt   总被引:1,自引:1,他引:0  
The Sinai Peninsula has a triangular shape between the African and Arabian Plates and is bounded from the western and eastern borders by the Gulf of Suez and Gulf of Aqaba–Dead Sea rift systems, respectively. It is affected by strong and destructive earthquakes (e.g., March 31, 1969 and November 22, 1995) and moderate earthquakes (m b?>?5) throughout its history. After the installation of the Egyptian National Seismic Network (ENSN), a great number of earthquakes has been recorded within and around Sinai. Consequently, the seismogenic source zones and seismotectonic behavior can be clearly identified. Available data, including both historical and instrumental (1900–1997), have been collected from national and international data centers. While the data from 1998 till December 2007 are gathered from ENSN bulletins. The seismogenic source zones that might affect Sinai Peninsula are defined more precisely in this work depending on the distribution of earthquakes, seismicity rate (a value), b value, and fault plane solution of the major earthquakes. In addition, the type of faults prevailed and characterized these zones. It is concluded that the Gulf of Aqaba zone–Dead Sea transform zone, Gulf of Suez rift zone, Cairo–Suez District zone, and Eastern Mediterranean dislocation zone represent the major effective zones for Sinai. Furthermore, there are two local seismic zones passing through Sinai contributing to the earthquake activities of Sinai, these are the Negev shear zone and Central Sinai fault (Themed fault) zone. The source parameters, a and b values, and the maximum expected moment magnitude have been determined for each of these zones. These results will contribute to a great extent in the seismic hazard assessment and risk mitigation studies for Sinai Peninsula to protect the developmental projects.  相似文献   

17.
In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion method and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20 %) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels for both selected probabilities of exceeding the median.  相似文献   

18.
We propose a basin-scale (~300 × 100 km) study of the pre-salt to salt sedimentary fill from the Suez rift based on outcrop and subsurface data. This study is a new synthesis of existing and newly acquired data using an integrated approach with (1) basin-scale synthesis of the structural framework, (2) stratigraphic architecture characterization of the entire Suez rift using sequence stratigraphy concepts, (3) lithologic maps reconstruction and interpretation, (4) isopach/depocenter maps interpolation to quantify sedimentary volumes, and (5) quantification of the sediment supply, mean carbonate and evaporite accumulation rates, and their integration into the rift dynamic. The Gulf of Suez is ca. 300-km-long and up to 80-km-wide rift structure, resulting from the late Oligocene to early Miocene rifting of the African and Arabian plates. The stratigraphic architecture has recorded five main stages of rift evolution, from rift initiation to finally tectonic quiescence characterized by salt deposits. Rift initiation (ca. 1–4 Myr duration): the Suez rift was initiated at the end of the Oligocene along the NNW-SSE trend of the Red Sea with evidences of active volcanism. Continental to lacustrine deposits only occurred in isolated depocenters. Sediment supply was relatively low. Rift widening (ca. 3 Myr duration): the rift propagated from south to north (Aquitanian), with first marine incursions from the Mediterranean Sea. The rift was subdivided into numerous depocenters controlled by active faults. Sedimentation was characterized by small carbonate platforms and associated sabkha deposits to the south and shallow open marine condition to the north with mixed sedimentation organized into an overall transgressive trend. Rift climax (ca. 5 Myr duration): the rift was then flooded during Burdigalian times recording the connection between the Mediterranean Sea and the Red Sea. The faults were gradually connected and reliefs on the rift shoulders were high as evidenced by a strong increase of the uplift/subsidence rates and sediment supply. Three main depocenters were then individualized across the rift and correspond to the Darag, Central, and Southern basins. Sedimentation was characterized by very large Gilbert-type deltas along the eastern margin and associated submarine fans and turbidite systems along the basin axis. Isolated carbonate platforms and reefs mainly occurred in the Southern basin and along tilted block crests. Late syn-rift to rift narrowing (ca. 4 Myr duration): during the Langhian, the basin recorded several falls of relative sea level and bathymetry in the rift axis was progressively reduced. The former reliefs induced during the rift climax were quickly destroyed as evidenced by the drastic drop in sediment supply. Stratigraphic reconstruction indicates that the Central basin was restricted during lowstand period; meanwhile, open marine conditions prevailed to the north and south of the Suez rift. The Central basin, Zaafarana, and Morgan accommodation zones thus acted as a major divide between the Mediterranean Sea and the Red Sea. During Serravalian times, the Suez rift also recorded several disconnections between the Mediterranean and Red seas as evidenced by massive evaporites in major fault-controlled depocenters. The Suez rift was occasionally characterized by N–S paleogeographic gradient with restricted setting to the north and open marine setting to the south (Red Sea). Tectonic quiescence to latest syn-rift (ca. 7 Myr duration): the Tortonian was then characterized by the deposition of very thick salt series (>1000 m) which recorded a period of maximum restriction for the Suez rift. The basin was still subdivided into several sub-basins bounded by major faults. The basin with a N-S paleogeographic gradient was totally and permanently disconnected from the Mediterranean Sea and connected to open marine condition via the Red Sea. The Messinian was also characterized by a thick salt series, but the evaporite typology and sedimentary systems distribution suggest a more humid climate than during Tortonian times. Pre-salt to salt transition was not sharp and lasted for ca. 4 Myr (Langhian-Serravalian). It was initiated as the result of the combined effect of (1) climatic changes with aridization and low water input from the catchments and (2) rift dynamic induced by plate tectonic reorganization that controlled the interplay between sea level and accommodation zones constituting sills.  相似文献   

19.
The present study aims mainly to delineate and outline the regional subsurface structural and tectonic framework of the buried basement rocks of Abu El Gharadig Basin, Northern Western Desert, Egypt. The potential field data (Bouguer gravity and total intensity aeromagnetic maps) carried out in the Abu El Gharadig Basin had been analyzed together with other geophysical and geological studies. The execution of this study is initiated by transformation of the total intensity aeromagnetic data to the reduced to pole (RTP) magnetic map. This is followed by applying several transformation techniques and various filtering processes through qualitative and quantitative analyses on both of the gravity and magnetic data. These techniques include the qualitative interpretation of gravity, total intensity magnetic and RTP magnetic maps. Regional–residual separation is carried out using the power spectrum. Also, the analytic signal and second vertical derivative techniques are applied to delineate the hidden anomalies. Aeromagnetic anomalies in the area reflect significant features on the basement tectonics, on the deep-seated structures and on the shallow-seated ones. Major faults and intrusions in the area are indicated to be mainly along the NE–SW, NW–SE, ENE–WSW and E–W directions. The Bouguer gravity map indicates major basement fracturing, as well as variations in the sedimentary basins and ridges and subsequent tectonic disturbances. The most obvious anomalous trends on the gravity map, based on their frequencies and amplitudes, are along the NE–SW, ENE–WSW, E–W and NW–SE trends. The main of Abu EL Gharadig Basin depositional center does not show sharp variations, because of the homogeneity of the marine rocks and the great basement depths.  相似文献   

20.
Earthquake focal mechanism solutions from 18 events in the central and northern parts of the Gulf of Suez with local magnitudes ranging from 2.8 to 5.2 and occurring between 1983 and 2004 are used to determine the type of motion and stress pattern of the region. Fault plane solutions show mostly normal component; pure normal faulting mechanisms and normal faulting with a strike-slip component. Only some mechanisms show pure strike-slip faulting. The fault planes strike in NW, WNW, NNE and ENE directions, in conformity with the geologically observed striking faults in the northern and central parts of the gulf. The principal stress orientation is also estimated by inverting the selected focal mechanism solutions. The results show that the northern part of the Gulf is subjected to NE–SW to NNE–SSW extension, with a horizontal σ3 (plunge 3°) and subvertical σ1 (plunge 80°). This means that the horizontal extensional stresses are still present in the central/northern Gulf of Suez.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号