首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
本文利用卫星测高、GRACE与温盐数据监测2003-2014年红海海平面变化,并分析了蒸发降水以及亚丁湾-红海质量交换对红海质量变化的影响。红海地区单一的温盐数据存在覆盖不全或质量不佳的问题,综合CORA、SODA与ORAS4温盐数据估算结果得到平均比容海平面变化,以改善比容信号的精度。针对GRACE数据处理过程中截断与空间平滑滤波引起的泄漏误差,提出改进尺度因子纠正泄漏误差,利用卫星测高数据进行模拟实验验证了改进尺度因子的有效性。利用传统尺度因子和改进尺度因子反演的红海质量变化周年振幅分别为16.1±1.3 cm和20.5±1.7 cm,利用卫星测高和温盐数据估算的质量变化周年振幅为20.2±1.0 cm,表明改进尺度因子可有效减小泄漏误差的影响,改善GRACE模型反演红海质量变化的精度。卫星测高、GRACE卫星重力数据以及平均温盐数据具有较好的一致性,联合GRACE和温盐数据估算的红海综合海平面变化周年振幅为16.6±1.7 cm,与卫星测高估算的总海平面变化周年振幅(16.2±0.9 cm)基本一致,表明多源数据可构成完整的红海海平面监测手段。相比于降水-蒸发作用,红海质量变化受红海与亚丁湾的海水质量交换的影响更为显著,其主导了红海质量的季节性变化。  相似文献   

2.
We have analyzed recent gravity recovery and climate experiment (GRACE) RL04 monthly gravity solutions, using a new decorrelating post-processing approach. We find very good agreement with mass anomalies derived from a global hydrological model. The post-processed GRACE solutions exhibit only little amplitude damping and an almost negligible phase shift and period distortion for relevant hydrological basins. Furthermore, these post-processed GRACE solutions have been inspected in terms of data fit with respect to the original inter-satellite ranging and to SLR and GPS observations. This kind of comparison is new. We find variations of the data fit due to solution post-processing only within very narrow limits. This confirms our suspicion that GRACE data do not firmly ‘pinpoint’ the standard unconstrained solutions. Regarding the original Kusche (J Geod 81:733–749, 2007) decorrelation and smoothing method, a simplified (order-convolution) approach has been developed. This simplified approach allows to realize a higher resolution—as necessary, e.g., for generating computed GRACE observations—and needs far less coefficients to be stored.  相似文献   

3.
We estimate seasonal global mean sea level changes using different data resources, including sea level anomalies from satellite radar altimetry, ocean temperature and salinity from the World Ocean Atlas 2001, time-variable gravity observations from the Gravity Recovery and Climate Experiment (GRACE) mission, and terrestrial water storage and atmospheric water vapor changes from the NASA global land data assimilation system and National Centers for Environmental Prediction reanalysis atmospheric model. The results from all estimates are consistent in amplitude and phase at the annual period, in some cases with remarkably good agreement. The results provide a good measure of average annual variation of water stored within atmospheric, land, and ocean reservoirs. We examine how varied treatments of degree-2 and degree-1 spherical harmonics from GRACE, laser ranging, and Earth rotation variations affect GRACE mean sea level change estimates. We also show that correcting the standard equilibrium ocean pole tide correction for mass conservation is needed when using satellite altimeter data in global mean sea level studies. These encouraging results indicate that is reasonable to consider estimating longer-term time series of water storage in these reservoirs, as a way of tracking climate change.  相似文献   

4.
利用GRACE、卫星测高和海洋实测温盐数据,探讨了2003~2012年间全球海平面、比容海平面和海水质量等的变化特征,并讨论了南极冰盖和格陵兰冰盖消融对全球海平面变化的影响。全球海平面整体呈上升趋势,上升速度为2.72±0.07 mm/a,且存在显著的空间分布特征。全球海平面、比容海平面和海水质量等的变化还具有显著的季节性特征,其中全球海平面变化的年周期振幅为4.6±0.3 mm。使用经验正交函数分析(EOF)得到全球海平面和比容海平面的季节性变化在南北半球存在显著的差异,但海水质量季节性变化不存在这种差异。南极冰盖和格陵兰冰盖的消融速率分别为-75.7±12.3 Gt/a和-124.1±2.9 Gt/a,对海平面的长期趋势项贡献分别为0.21±0.03 mm/a和0.34±0.01 mm/a,仅占全球海水质量增加速度1.80±0.10 mm/a的12%和19%,总计占31%,因此,两极冰盖质量消融并不是2003-2012年间海水质量增加的最主要因素。  相似文献   

5.
首先利用重力恢复与气候实验(gravity recovery and climate experiment,GRACE)卫星重力、卫星测高和海洋温盐数据分析了2003-2012年间南海海水质量的变化特征,进而结合海洋和气象资料探讨了厄尔尼诺和南方涛动(El Ni?o-Southern Oscillation,ENSO)、净淡水通量、海水体积输送和陆地径流在此期间对南中国海海水质量变化的影响。研究结果表明,南海海水质量变化主要受海面净淡水通量和海水体积输送的联合调制影响,周边陆地径流对其影响有限。南海海水质量季节性变化显著,且具有明显的长期增加趋势;ENSO通过改变降水和黑潮自吕宋海峡流入南海的水量影响南海海水质量,使得南海海水质量存在着显著的具有ENSO特征的年际变化。  相似文献   

6.
The direct recovery of surface mass anomalies using GRACE KBRR data processed in regional solutions provides mass variation estimates with 10-day temporal resolution. The approach undertaken herein uses a tailored orbit estimation strategy based solely on the KBRR data and directly estimates mass anomalies from the GRACE data. We introduce a set of temporal and spatial correlation constraints to enable high resolution mass flux estimates. The Mississippi Basin, with its well understood surface hydrological modelling available from the Global Land Data Assimilation System (GLDAS), which uses advanced land surface modeling and data assimilation techniques, and a wealth of groundwater data, provides an opportunity to quantitatively compare GRACE estimates of the mass flux in the entire hydrological column with those available from independent and reliable sources. Evaluating GRACE’s performance is dependent on the accuracy ascribed to the hydrological information, which in and of itself is a complex challenge (Rodell in Hydrogeol J, doi:, 2007). Nevertheless, the Mississippi Basin is one of the few regions having a large hydrological signal that can support a meaningful GRACE comparison on the spatial scale resolved by GRACE. The isolation of the hydrological signal is dependent on the adequacy of the forward mass flux modeling for tides and atmospheric pressure variations. While these models have non-uniform global performance they are excellent in the Mississippi Basin. Through comparisons with the independent hydrology, we evaluate the effect on the solution of changing correlation times and distances in the constraints, altering the parameter recovery for areas external to the Mississippi Basin, and changing the relative strength of the constraints with respect to the KBRR data. The accuracy and stability of the mascon solutions are thereby assessed, especially with regard to the constraints used to stabilize the solution. We show that the mass anomalies, as represented by surface layer of water within regional cells have accuracy estimates of ±2–3 cm on par with the best hydrological estimates and consistent with our accuracy estimates for GRACE mass anomaly estimates. These solutions are shown to be very stable, especially for the recovery of semi-annual and longer period trends, where for example, the phase agreement for the dominant annual signal agrees at the 10-day level of resolution provided by GRACE. This validation confirms that mascons provide critical environmental data records for a wide range of applications including monitoring ground water mass changes.  相似文献   

7.
利用2005—2009年共60个月的卫星测高、GRACE数据计算全球66°S~66°N比容海平面变化,同时利用Argo数据计算得到该区域的比容海平面变化,结果可知比容海平面具有明显的周年变化。比较不同方法得到的比容海平面变化发现二者在整体趋势上较为一致,但局部也存在着差异。联合卫星测高、GRACE和利用Argo数据得到2005—2009年比容海平面变化振幅分别为10.5 mm和4.3 mm,长期变化趋势分别为1.63 mm/a和0.32mm/a。  相似文献   

8.
In order to effectively recover surface mass or geoid height changes from the gravity recovery and climate experiment (GRACE) time-variable gravity models, spatial smoothing is required to minimize errors from noise. Spatial smoothing, such as Gaussian smoothing, not only reduces the noise but also attenuates the real signals. Here we investigate possible amplitude attenuations and phase changes of seasonal water storage variations in four drainage basins (Amazon, Mississippi, Ganges and Zambezi) using an advanced global land data assimilation system. It appears that Gaussian smoothing significantly affects GRACE-estimated basin-scale seasonal water storage changes, e.g., in the case of 800 km smoothing, annual amplitudes are reduced by about 25–40%, while annual phases are shifted by up to 10°. With these effects restored, GRACE-estimated water storage changes are consistently larger than model estimates, indicating that the land surface model appears to underestimate terrestrial water storage change. Our analysis based on simulation suggests that normalized attenuation effects (from Gaussian smoothing) on seasonal water storage change are relatively insensitive to the magnitude of the true signal. This study provides a numerical approach that can be used to restore seasonal water storage change in the basins from spatially smoothed GRACE data.  相似文献   

9.
联合Argo浮标、卫星测高和GRACE数据研究海平面变化   总被引:1,自引:1,他引:0  
卫星测高、GRACE、Argo等数据为监测海平面变化提供了丰富的观测数据,利用Argo数据计算的比容海平面变化,可以更加深入地理解卫星测高以及卫星重力获得的海平面变化。利用2004年1月至2010年12月间Argo浮标采集的温度和盐度数据,通过数值积分方法计算了65°S~65°N间的比容海平面异常,并通过最小二乘拟合得到比容海平面变化的长期趋势为0.63±0.45 mm/a,与Llovel得到的结果吻合较好。利用卫星测高数据得到该时间段内海平面变化趋势为2.52±0.71 mm/a,GRACE反演得到的海水质量变化引起的海平面趋势为1.84±0.13mm/a,结果表明海水质量变化成为引起海平面变化的主要因素。最后对联合卫星测高、GRACE得到比容海平面变化与相应Argo浮标数据计算结果的空间分布特征进行了比较。  相似文献   

10.
为探究重力场恢复与气候实验(gravity recovery and climate experiment,GRACE)卫星与全球定位系统(global positioning system,GPS)两种独立技术获取的因陆地水储量变化引起的地壳垂向季节性位移的一致性,选取澳大利亚27个GPS站点5~10 a的高程时间序...  相似文献   

11.
A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04’s poor ability to accurately and reliably measure hydrological signal above 3–9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.  相似文献   

12.
曲伟菁  吴斌  周旭华 《测绘学报》2012,41(6):904-909
本文利用2002年4月至2010年10月的Lageos1和Lageos2两颗激光卫星观测数据、GRACE以及地球物理模型三种独立的方法计算地球低阶重力场系数J 的变化,根据大气压强数据计算 J 时分别按反变气压计(IB)和非反变气压计(NIB)两种假设进行计算。通过分析 J 的季节特性表明,大气在NIB假设下得到的周年振幅比在IB假设下得到的振幅大3倍左右,相位相差47°;大气和陆地水的质量变化对 J 周年变化的贡献占主导地位,海洋的影响最小;大气、海洋和陆地水得到 J 半年振幅和相位值与SLR得到的振幅和相位值吻合较差,尤其是在IB假设下大气得到的结果与SLR结果相差最大; SLR、GRACE和地球物理模型三种独立方法得到的 J 周年项之间吻合相对较好,GRACE得到的周年振幅比SLR得到的周年振幅大50%左右, SLR观测得到的 J 周年振幅介于在NIB和IB两种假设下地球物理模型得到的结果之间;GRACE与SLR得到的 J 半年项的振幅相同,在IB假设下AOW得到的 J 半年振幅和相位与SLR结果差异最大。  相似文献   

13.
Annual variations in water storage and precipitation in the Amazon Basin   总被引:1,自引:0,他引:1  
We combine satellite gravity data from the gravity recovery and climate experiment (GRACE) and precipitation measurements from the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center’s (CPC) Merged Analysis of Precipitation (CMAP) and the Tropical Rainfall Measuring Mission (TRMM), over the period from mid-2002 to mid-2006, to investigate the relative importance of sink (runoff and evaporation) and source (precipitation) terms in the hydrological balance of the Amazon Basin. When linear and quadratic terms are removed, the time-series of land water storage variations estimated from GRACE exhibits a dominant annual signal of 250 mm peak-to-peak, which is equivalent to a water volume change of ~1,800 km3. A comparison of this trend with accumulated (i.e., integrated) precipitation shows excellent agreement and no evidence of basin saturation. The agreement indicates that the net runoff and evaporation contributes significantly less than precipitation to the annual hydrological mass balance. Indeed, raw residuals between the de-trended water storage and precipitation anomalies range from ±40 mm. This range is consistent with stream-flow measurements from the region, although the latter are characterized by a stronger annual signal than our residuals, suggesting that runoff and evaporation may act to partially cancel each other.  相似文献   

14.
由GRACE RL05数据反演近10年中国大陆水储量及海水质量变化   总被引:2,自引:2,他引:0  
卢飞  游为  范东明  黄强 《测绘学报》2015,44(2):160-167
利用CSR(Center for Space Research)提供的GRACE RL05数据反演2003—2012年中国大陆水储量及其周边海域海水质量变化趋势。采用改进去相关滤波算法,使拟合最高阶次位系数为55及数据系列两端球谐位系数无须作为滑动窗口中心可直接拟合,去条带效果相比传统方法更明显。结果表明,中国陆地水储量在华北平原、三峡地区及青海、新疆、西藏交界地区变化较大。十年间,华北平原地下水以4.1±1.3mm/a速度减少,陆地水和地表水变化主要集中在2004—2008年;三峡水库3次蓄水引起地区等效水高变化分别为52mm、18mm及7mm;青海、西藏、新疆3省区交界地区地表水变化引起陆地水、地下水分别以10.6±0.9mm/a及11.6±1.0mm/a的速度增加。扣除冰川均衡调整后,GRACE反演海水质量的变化结果显示,东海、南海、黄海海水质量分别以4.23±0.9mm/a、1.33±0.9mm/a及3.09±1.1mm/a的速度上升,东海海水质量在长江入口附近上升速度最快。  相似文献   

15.
Eddies and planetary waves are identified as one of the important factors that control the dynamics of the Arabian Sea. During 10–14 January 1990, Ignat, Paulyuchenkov (USSR ship) conducted an experiment in the central Arabian Sea and of late TOPEX/POSEIDON satellites collected data on sea surface height (SSH) anomalies of the Arabian Sea. These data sets give an opportunity to understand the characteristic of eddies and planetary waves in this region during winter. The geostrophic flow revealed three anticyclonic and two cyclonic eddies of diameters ranging from 75 to more than 150 km from surface to subsurface levels. Current speeds around different eddies were maximum at surface and varied from 9 cm/s to 25 cm/s (at the middle point between the center and periphery). The occurrence of eddies were further investigated with the TOPEX/POSEIDON altimetry for the years 1993–97. The analysis revealed multiple eddies of diameter 100 to 550 km occur every year with maximum number of eddies during 1997 and minimum during 1995. The calculated speed varied between 8–30 cm/s around various eddies. Longitude-Time plots showed annual Rossby waves generating at the eastern Arabian Sea and propagating westwards with a phase speed of ~ 10 cm/s along 16° N. Further, it was observed that these waves arrived in the study area by January. In addition, another positive anomaly of SSH was found generating at the western Arabian Sea simultaneously and extended up to the study region by April–June. Time series of SSH at selected locations along 16°N revealed many small-scale oscillations and their spatial variability. These oscillations were delineated using the FFT analysis. Other than the Rossby wave, the major components at the study region were 40–60 and 26–32 day oscillations. The implications of these long period waves associated with eddies are discussed.  相似文献   

16.
Continental hydrology loading observed by VLBI measurements   总被引:1,自引:1,他引:0  
Variations in continental water storage lead to loading deformation of the crust with typical peak-to-peak variations at very long baseline interferometry (VLBI) sites of 3–15 mm in the vertical component and 1–2 mm in the horizontal component. The hydrology signal at VLBI sites has annual and semi-annual components and clear interannual variations. We have calculated the hydrology loading series using mass loading distributions derived from the global land data assimilation system (GLDAS) hydrology model and alternatively from a global grid of equal-area gravity recovery and climate experiment (GRACE) mascons. In the analysis of the two weekly VLBI 24-h R1 and R4 network sessions from 2003 to 2010 the baseline length repeatabilities are reduced in 79 % (80 %) of baselines when GLDAS (GRACE) loading corrections are applied. Site vertical coordinate repeatabilities are reduced in about 80 % of the sites when either GLDAS or GRACE loading is used. In the horizontal components, reduction occurs in 70–80 % of the sites. Estimates of the annual site vertical amplitudes were reduced for 16 out of 18 sites if either loading series was applied. We estimated loading admittance factors for each site and found that the average admittances were 1.01 \(\pm \) 0.05 for GRACE and 1.39 \(\pm \) 0.07 for GLDAS. The standard deviations of the GRACE admittances and GLDAS admittances were 0.31 and 0.68, respectively. For sites that have been observed in a set of sufficiently temporally dense daily sessions, the average correlation between VLBI vertical monthly averaged series and GLDAS or GRACE loading series was 0.47 and 0.43, respectively.  相似文献   

17.
Temporal variations in the geographic distribution of surface mass cause surface displacements. Surface displacements derived from GRACE gravity field coefficient time series also should be observed in GPS coordinate time series, if both time series are sufficiently free of systematic errors. A successful validation can be an important contribution to climate change research, as the biggest contributors to mass variability in the system Earth include the movement of oceanic, atmospheric, and continental water and ice. In our analysis, we find that if the signals are larger than their precision, both geodetic sensor systems see common signals for almost all the 115 stations surveyed. Almost 80% of the stations have their signal WRMS decreased, when we subtract monthly GRACE surface displacements from those observed by GPS data. Almost all other stations are on ocean islands or small peninsulas, where the physically expected loading signals are very small. For a fair comparison, the data (79 months from September 2002 to April 2009) had to be treated appropriately: the GPS data were completely reprocessed with state-of-the-art models. We used an objective cluster analysis to identify and eliminate stations, where local effects or technical artifacts dominated the signals. In addition, it was necessary for both sets of results to be expressed in equivalent reference frames, meaning that net translations between the GPS and GRACE data sets had to be treated adequately. These data sets are then compared and statistically analyzed: we determine the stability (precision) of GRACE-derived, monthly vertical deformation data to be ~1.2 mm, using the data from three GRACE processing centers. We statistically analyze the mean annual signals, computed from the GPS and GRACE series. There is a detailed discussion of the results for five overall representative stations, in order to help the reader to link the displayed criteria of similarity to real data. A series of tests were performed with the goal of explaining the remaining GPS–GRACE residuals.  相似文献   

18.
The Gravity Recovery and Climate Experiment (GRACE) products provide valuable information about total water storage variations over the whole globe. Since GRACE detects mass variations integrated over vertical columns, it is desirable to separate its total water storage anomalies into their original sources. Among the statistical approaches, the principal component analysis (PCA) method and its extensions have been frequently proposed to decompose the GRACE products into space and time components. However, these methods only search for decorrelated components that on the one hand are not always interpretable and on the other hand often contain a superposition of independent source signals. In contrast, independent component analysis (ICA) represents a technique that separates components based on assumed statistical independence using higher-order statistical information. If one assumes that independent physical processes generate statistically independent signal components added up in the GRACE observations, separating them by ICA is a reliable strategy to identify these processes. In this paper, the performance of the conventional PCA, its rotated extension and ICA are investigated when applied to the GRACE-derived total water storage variations. These analyses have been tested on both a synthetic example and on the real GRACE level-2 monthly solutions derived from GeoForschungsZentrum Potsdam (GFZ RL04) and Bonn University (ITG2010). Within the synthetic example, we can show how imposing statistical independence in the framework of ICA improves the extraction of the ‘original’ signals from a GRACE-type super-position. We are therefore confident that also for the real case the ICA algorithm, without making prior assumptions about the long-term behaviour or on the frequencies contained in the signal, improves over the performance of PCA and its rotated extension in the separation of periodical and long-term components.  相似文献   

19.
本文利用UTCSR 2003年1月到2008年8月间的GRACE Level-2 RL04重力场模型估计了南极冰盖质量变化。计算过程中分别采用高斯和Wiener滤波两种平滑方法,分别采用22、43和65个月重力场模型计算Wiener滤波信号与噪声函数,得出以下结论:在实际的计算过程中需要具体计算Wiener滤波平滑因子值,65个月GRACE重力场模型计算得到的Wiener滤波权值非常接近于平滑半径为540km高斯滤波权值;采用两种不同的滤波方法在相同区域质量变化率基本相同。  相似文献   

20.
This work is dedicated to the wavelet modeling of regional and temporal variations of the Earth’s gravitational potential observed by the GRACE (gravity recovery and climate experiment) satellite mission. In the first part, all required mathematical tools and methods involving spherical wavelets are provided. Then, we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified which is restricted to areas where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time-series of regionally obtained wavelet coefficients of the gravitational signal originating from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement with previous studies and illustrate that wavelets are an appropriate tool to investigate regional effects in the Earth’s gravitational field. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号