首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current contribution presents aspects of the structural style and fault kinematics of the Rus Formation that expose at Jabal Hafit, Al Ain, United Arab Emirates. Although the major structure of Jabal Hafit is an anticlinal fold, fractures (joints and faults) are the prominent structure of the study area. The fractures can be interpreted as the distributed effect of deep-seated basement fault reactivation or to be as reactivation of deep-seated basement faults. These fractures were created during two main tectonic stress regimes. The first is a WNW–ESE S Hmax strike-slip stress regime, responsible for producing E–W to ESE–WNW joints and E–W dextral strike-slip and NNE–SSW reverse faults. This stress is interpreted to be post-Early Eocene in age and related to the second phase of thrusting in the Oman Mountains in the Miocene. The second stress regime is a NNE–SSW S Hmax transtensional (strike-slip extensive) stress regime that was responsible for N–S to NNE–SSW striking joints and NE–SW sinistral strike-slip and N–S normal faults. This regime is interpreted to be post-Middle Eocene in age. This stress was the response to the collision of the Arabian–Eurasian Plates which began during the Late Eocene and continues to the present day.  相似文献   

2.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

3.
Earthquake focal mechanism solutions from 18 events in the central and northern parts of the Gulf of Suez with local magnitudes ranging from 2.8 to 5.2 and occurring between 1983 and 2004 are used to determine the type of motion and stress pattern of the region. Fault plane solutions show mostly normal component; pure normal faulting mechanisms and normal faulting with a strike-slip component. Only some mechanisms show pure strike-slip faulting. The fault planes strike in NW, WNW, NNE and ENE directions, in conformity with the geologically observed striking faults in the northern and central parts of the gulf. The principal stress orientation is also estimated by inverting the selected focal mechanism solutions. The results show that the northern part of the Gulf is subjected to NE–SW to NNE–SSW extension, with a horizontal σ3 (plunge 3°) and subvertical σ1 (plunge 80°). This means that the horizontal extensional stresses are still present in the central/northern Gulf of Suez.  相似文献   

4.
The Kutai Basin formed in the middle Eocene as a result of extension linked to the opening of the Makassar Straits and Philippine Sea. Seismic profiles across the northern margin of the Kutai Basin show inverted middle Eocene half-graben oriented NNE–SSW and N–S. Field observations, geophysical data and computer modelling elucidate the evolution of one such inversion fold. NW–SE and NE–SW trending fractures and vein sets in the Cretaceous basement have been reactivated during the Tertiary. Offset of middle Eocene carbonate horizons and rapid syn-tectonic thickening of Upper Oligocene sediments on seismic sections indicate Late Oligocene extension on NW–SE trending en-echelon extensional faults. Early middle Miocene (N7–N8) inversion was concentrated on east-facing half-graben and asymmetric inversion anticlines are found on both northern and southern margins of the basin. Slicken-fibre measurements indicate a shortening direction oriented 290°–310°. NE–SW faults were reactivated with a dominantly dextral transpressional sense of displacement. Faults oriented NW–SE were reactivated with both sinistral and dextral senses of movement, leading to the offset of fold axes above basement faults. The presence of dominantly WNW vergent thrusts indicates likely compression from the ESE. Initial extension during the middle Eocene was accommodated on NNE–SSW, N–S and NE–SW trending faults. Renewed extension on NW–SE trending faults during the late Oligocene occurred under a different kinematic regime, indicating a rotation of the extension direction by between 45° and 90°. Miocene collisions with the margins of northern and eastern Sundaland triggered the punctuated inversion of the basin. Inversion was concentrated in the weak continental crust underlying both the Kutai Basin and various Tertiary basins in Sulawesi whereas the stronger oceanic crust, or attenuated continental crust, underlying the Makassar Straits, acted as a passive conduit for compressional stresses.  相似文献   

5.
Subsurface structural trends and tectonics affecting the offshore Nile Delta area, Egypt, have been studied through the interpretations of gravity and magnetic data. Reduced to the pole, regional–residual separation, Tilt derivative and Euler deconvolution techniques are applied for the processing and interpretations of the magnetic and gravity data. The average depth of the sedimentary cover, estimated from the two-dimensional power spectrum technique ranges between 8 km and 13 km. The interpretation of the gravity and magnetic data indicates that the study area is affected by many subsurface structural trends. The NW–SE is the major trend related to El-Temsah and Misfaq-Bardwil trend. The NE–SW direction is the second dominant trend, related to the Rosetta trend. Other trends defined through the interpretation of gravity and magnetic data include: the N–S direction, related to the Baltim fault trend, the E–W direction, related to the Neogene hinge line and the NNE–SSW related to the Gulf of Aqaba. Accessory trends include the ENE–WSW, WNW–ESE and finally the NNW–SSW.  相似文献   

6.
Paleostress orientations from mechanically twinned calcite in carbonate rocks and veins in the neighborhood of large faults were investigated to comment on the nature of weak upper crustal stresses affecting sedimentary successions within the Proterozoic Cuddapah basin, India. Application of Turner's P–B–T method and Spang's Numerical dynamic analysis on Cuddapah samples provided paleostress orientations comparable to those derived from fault-slip inversion. Results from the neighborhood of E–W faults cutting through the Paleoproterozoic Papaghni and Chitravati groups and the Neoproterozoic Kurnool Group in the western Cuddapah basin, reveal existence of multiple deformation events − (1) NE–SW σ3 in strike-slip to extensional regime along with an additional event having NW–SE σ3, for lower Cuddapah samples; (2) compressional/transpressional event with ESE–WNW or NNE–SSW σ1 mainly from younger Kurnool samples.Integrating results from calcite twin data inversion, fault-slip analysis and regional geology we propose that late Mesoproterozoic crustal extension led to initial opening of the Kurnool sub-basin, subsequently influenced by weak compressional deformation. The dynamic analysis of calcite twins thus constrains the stress regimes influencing basin initiation in the southern Indian cratonic interior and subsequent basin inversion in relation to craton margin mobile belts and plausible global tectonic events in the Proterozoic.  相似文献   

7.
Detailed micro-meso to macroscopic structural analyses reveal two deformation phases in the western limb of the Hazara-Kashmir Syntaxis(HKS). Bulk top to NW shearing transformed initially symmetrical NNE-SSW trending meso to macroscopic folds from asymmetric to overturned ones without changing their trend. Sigmoidal en-echelon tension gashes developed during this deformation,that were oblique to bedding parallel worm burrows and bedding planes themselves. Strain analyses of deformed elliptical ooids using the R_f/φ method constrain the internal strain patterns of the NNE-SSW structures. The principal stretching axis(S_3) defined by deformed elliptical ooids is oriented N27°E at right angles to WNW-ESE shortening. The deformed elliptical ooids in sub-vertical bedding vertical planes contain ooids that plunge ~70° SE due to NW-directed tectonic transport. Finite strain ratios are1.45(R_(xy)) parallel to bedding plane and 1.46(R_(yz)) for the vertical plane. From these 2D strain values, we derive an oblate strain ellipsoidal in 3D using the Flinn and Hsu/Nadai techniques. Strains calculated from deformed elliptical ooids average-18.10% parallel to bedding and-18.47% in the vertical plane.However, a balanced cross-section through the study area indicates a minimum of~-28% shortening.Consequently, regional shortening was only partially accommodated by internal deformation.  相似文献   

8.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

9.
Three regional joint sets striking N–S, E–W and WNW–ESE affect the Tertiary rocks of the central Ebro basin. From analysis of their chronological relationships and spatial distribution, it is concluded that they correspond to two different tectonic events. The N–S set (oldest) and the E–W set (younger) are present in the southern and central sectors, while the WNW–ESE joint set predominates in the northern one. The N–S joints propagated in response to joint-normal and fluid loads under an intraplate stress field with SHmax oriented near N–S (related to forces caused by the convergence of Africa, Iberia and Europe and rifting at the Valencia trough) during the sedimentary infilling of the basin. These joints are only present in the southern part of the area. The E–W joint set in the southern-central sector records the same fracturing event as the WNW–ESE set does in the northern one. Its orientation was modified by the presence of the older N–S set in the south, which perturbed the regional stress field. The younger WNW–ESE and E–W joint sets are interpreted as unloading joints. These propagated as a consequence of flexural uplift and exhumation related to isostatic rebound at the Pyrenees and the Ebro foreland basin. A numerical approach is used to explain the inhomogeneous distribution of the N–S joint set in terms of their absence being controlled by the depth of the water table at the time of their formation.  相似文献   

10.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   

11.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   

12.
A similar succession of Foliation Inflection/Intersection Axis (FIAs) trends preserved within porphyroblasts is present in two areas separated by 200 km along the Rocky Mountains. The Precambrian rocks in Central Colorado and Northern New Mexico were affected by deformation and metamorphism from ~1506 to 1366 Ma. A succession of five FIAs trending W–E, SSW–NNE, NNW–SSE, NW–SE and WSW–ENE is distinguished in Central Colorado and dated at 1506 ± 15 Ma, 1467 ± 23 Ma, 1425 ± 18 Ma, not dated and 1366 ± 20 Ma respectively. To the south in Northern New Mexico, a succession of five FIAs trending SSW–NNE, WNW–ESE, NNW–SSE, NW–SE and WSW–ENE is distinguished and dated at 1482 ± 48 Ma, 1448 ± 12 Ma, 1422 ± 35 Ma, not dated and 1394 ± 22 Ma. The excellent correlation of the sequence of FIA trends and their ages between regions reveals a sixfold‐FIA succession across the region with the first developed FIA set in Central Colorado not present in Northern New Mexico and the third FIA set in the region not present in Central Colorado. Preferential partitioning of W–E trending deformation into the Central Colorado region ~1506 ± 15 Ma was followed by SSW–NNE trending deformation that affected both regions at 1470 ± 20 Ma. However, preferential partitioning of WNW–ESE trending deformation into Northern New Mexico at 1448 ± 12 Ma left Central Colorado unaffected. Both regions were then affected by the three remaining periods of orogenesis, the first trending NNW–SSE at 1424 ± 15 Ma followed by one trending NW–SE that has not yet been dated, and then one trending WSW–ENE at 1390 ± 19 Ma. This suggests that the Yavapai terrane was tectonized at ~1506 Ma, prior to amalgamation with the Mazatzal terrane ~1470 Ma. Subsequent orogenesis was initially partitioned preferentially into the Mazatzal terrane, but the following three periods of tectonism affected both terranes in a similar manner.  相似文献   

13.
The tectonic effects of the Thulean mantle plume on the opening of the North Atlantic Ocean is still poorly understood. An analysis of the brittle deformation affecting the Late Cretaceous Chalk and Lower Tertiary igneous formations cropping out in Ulster (Northern Ireland), part of the Thulean Province, leads to the recognition of two tectonic phases. Each of these phases is characterized by different stress regimes with similar trends of the horizontal maximum principal stress σH. The first phase, syn-magmatic and dominated by NE–SW to ENE–WSW extension, occurred during the Palaeocene. It is followed by a second post-magmatic phase, characterized initially by a probably Eocene strike-slip to compressional palaeo-stress regime with σ1 (=σH) trending NE–SW to NNE–SSW associated with the partial reactivation (as reverse faults) of normal faults formed during the first phase NE–SW extension. This episode is postdated by an Oligocene extension, with σH (=σ2) still striking NNE–SSW/NE–SW, which reactivated Eocene strike-slip faults as nearly vertical dip-slip normal faults. This Palaeogene tectonic evolution is consistent with the tectonic evolution of similar age in western Scotland and in the Faeroe Islands. In particular, the post-magmatic NE–SW compression is here related to the ‘Faeroe compressive event’, which is related to the earliest stages of drift of the Greenland plate.  相似文献   

14.
The Ouarsenis area is one of the most developed karstic systems of Algeria. It is a karst reservoir drinking water with a population of more than 50,000 people taking fully benefit from it. To understand the development of this karstic system, the local tectonic history of the four main mountain ranges of this culminating area (Ouarsenis) has been analyzed. Although previously identified primarily Cenozoic tectonic activities have been observed, a set of NW-SE joints intersecting the Jurassic limestone has been associated to a post-nappes tectonic events. Moreover, numerous joint sets oriented NNE/SSW have been identified almost over the entire culminating area. These joints are the direct consequence of the following stress history: (i) a NW/SE shortening responsible for a major overlap and the first fold (P1) phase, (ii) a second NNE/SSW shortening stage responsible for the second folding (P2) phase associated with 70° N sinistral strike-slip trend, (iii) a WNW/ESE extension phase resulting from the change of σ 3 stress vertical axis, and (iv) a shearing stress creating a 120° N sinistral strike-slip fault. Only the late phases are responsible of the development of joints, which have been karstified later on. Indeed, significant families of karstified joints, i.e., 20° and 70° N have been found. These joints are related to the extensional and shearing modes, respectively, and linked to a particular in situ karstogenesis. Moreover, this study suggests an ancient establishment of the karstic systems in the Ouarsenis region in at least two stages: pre-figured and activated behaviors during the Cenozoic.  相似文献   

15.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Four trends of joint sets (WNW–ESE, NW–SE, NNW–SSE and NE–SW) are found in upper Turonian carbonate rocks within the Neqarot syncline of south-central Israel. The two most predominant sets strike parallel to the trend of maximum compressive stress directions (SH) associated with the plate-related Syrian Arc stress field (SAS; WNW–ESE) active during the Cretaceous to present and the perturbed regional stress field (NNW–SSE) related to stress accumulation on the Dead Sea Transform during the Miocene to the present. Eighty-two percent of the beds in this study contain joints parallel with the latter trend, whereas 42% contain joints parallel to the former trend. All beds with layer thickness to spacing ratio (FSR)>1.5 have NNW–SSE joint sets compatible with the Dead Sea Transform stress field (DSS), whereas all joints sets that are not compatible with the DSS stress field fall beneath this value for FSR. Considering lithology, joints in five of six chalky limestone beds and all marly limestone beds are compatible with the DSS, whereas joints compatible with the SAS do not develop in these marly and chalky limestone beds. In the study area, the joint sets lack a consistent formation sequence where more than one set is found in a single bed. We use these observations to conclude that all studied joints are Miocene or younger, that the regional stress field from the Miocene to the present fluctuated, between DSS and SAS states, and that the higher FSRs correspond to a greater amount of joint-normal strain in response to the DSS.  相似文献   

17.
山西太古代——中生代构造应力场   总被引:9,自引:0,他引:9  
林建平 《现代地质》1991,5(4):355-365
本文采用历史分析与力学分析相结合的原则,研究山西太古代至中生代五次主要构造运动的形变特征、主应力方向及分布规律。中太古代晚期(阜平运动)以SSW向挤压为主;晚太古代末期(五台运动)、早元古代末期(吕粱运动)和侏罗纪(燕山运动)受SE—SEE向挤压;白垩纪(四川运动)以SSW向挤压为特征。五次构造运动的最大主压应力均呈近水平方向。  相似文献   

18.
The Australian continent displays the most complex pattern of present-day tectonic stress observed in any major continental area. Although plate boundary forces provide a well-established control on the large-scale (>500 km) orientation of maximum horizontal stress (SHmax), smaller-scale variations, caused by local forces, are poorly understood in Australia. Prior to this study, the World Stress Map database contained 101 SHmax orientation measurements for New South Wales (NSW), Australia, with the bulk of the data coming from shallow engineering tests in the Sydney Basin. In this study we interpret present-day stress indicators analysed from 58.6 km of borehole image logs in 135 coal-seam gas and petroleum wells in different sedimentary basins of NSW, including the Gunnedah, Clarence-Moreton, Sydney, Gloucester, Darling and Bowen–Surat basins. This study provides a refined stress map of NSW, with a total of 340 (A–E quality) SHmax orientations consisting of 186 stress indicators from borehole breakouts, 69 stress measurements from shallow engineering methods, 48 stress indicators from drilling-induced fractures, and 37 stress indicators from earthquake focal mechanism solutions. We define seven stress provinces throughout NSW and determine the mean orientation of the SHmax for each stress province. The results show that the SHmax is variable across the state, but broadly ranges from NE–SW to ESE–WNW. The SHmax is approximately E–W to ESE–WNW in the Darling Basin and Southeastern Seismogenic Zone that covers the west and south of NSW, respectively. However, the present-day SHmax rotates across the northeastern part of NSW, from approximately NE–SW in the South Sydney and Gloucester basins to ENE–WSW in the North Sydney, Clarence-Moreton and Gunnedah basins. Comparisons between the observed SHmax orientations and Australian stress models in the available literature reveal that previous numerical models were unable to satisfactorily predict the state of stress in NSW. Although clear regional present-day stress trends exist in NSW, there are also large perturbations observed locally within most stress provinces that demonstrate the significant control on local intraplate sources of stress. Local SHmax perturbations are interpreted to be due to basement topography, basin geometry, lithological contrasts, igneous intrusions, faults and fractures. Understanding and predicting local stress perturbations has major implications for determining the most productive fractures in petroleum systems, and for modelling the propagation direction and vertical height growth of induced hydraulic fractures in simulation of unconventional reservoirs.  相似文献   

19.
The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ∼1400 m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early–Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre‐sedimentation phase, include pre‐rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic–Early Jurassic fluvial sedimentation (Lower Sandstone, ∼300 m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ∼30 m thick); (c) Early–Middle Jurassic deepening of the basin (Lower Limestone, ∼450 m thick); (d) desiccation of the basin and deposition of Early–Middle Jurassic gypsum; (e) Middle–Late Jurassic marine transgression (Upper Limestone, ∼400 m thick); (f) Late Jurassic–Early Cretaceous basin‐uplift and marine regression (alluvial/fluvial Upper Sandstone, ∼280 m thick); (3) the post‐sedimentation phase, including Early–Late Oligocene eruption of 500–2000 m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ∼300 m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic–Cretaceous NE–SW‐directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW‐trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW–SE‐directed extension related to the Main Ethiopian Rift that formed NE‐trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E–W and NNE–SSW‐directed extensions related to oblique opening of the Main Ethiopian Rift and development of E‐trending transverse faults, as well as NE–SW‐directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E–W‐directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N‐, ESE‐ and NW‐trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This work integrates stress data from Global Positioning System measurements and earthquake focal mechanism solutions, with new borehole breakout and natural fracture system data to better understand the complex interactions between the major tectonic plates in northwestern South America and to examine how the stress regime in the Eastern Cordillera and the Llanos foothills in Colombia has evolved through time. The dataset was used to generate an integrated stress map of the northern Andes and to propose a model for stress evolution in the Eastern Cordillera. In the Cordillera, the primary present-day maximum principal stress direction is WNW–ESE to NW–SE, and is in the direction of maximum shortening in the mountain range. There is also a secondary maximum principal stress direction that is E–W to ENE–WSW, which is associated with the northeastward “escape” of the North Andean block, relative to stable South America. In the Cupiagua hydrocarbon field, located in the Llanos foothills, the dominant NNE–SSW fractures are produced by the Panama arc–North Andes collision and range-normal compression. However, less well developed asymmetrical fractures oriented E–W to WSW–ENE and NNW–SSE are also present, and may be related to pre-folding stresses in the foreland basin of the Central Cordillera or to present-day shear associated with the northeastward “escape” of the north Andean block. Our study results suggest that an important driver for orogenic deformation and changes in the stress field at obliquely convergent subduction zone boundaries is the arrival of thickened crust, such as island arcs and aseismic ridges, at the trench.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号