首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
The current study was taken up to investigate the utility of remote sensing and GIS tools for evaluation of Integrated Wasteland Development Programme (IWDP) implemented during 1997–2001 in Katangidda Nala watershed, Chincholi taluk, Gulbarga district, Karnataka. The study was carried out using IRS 1C, LISS III data of December 11, 1997 (pre-treatment) and November 15, 2002 (post-treatment) covering the watershed to assess the changes in land use / land cover and biomass that have changed over a period of five years (1997–2002). The images were classified into different land use/land cover categories using supervised classification by maximum likelihood algorithm. They were also classified into different biomass levels using Normalized Difference Vegetation Index (NDVI) approach. The results indicated that the area under agriculture crops and forest land were increased by 671 ha (5.7%) and 1,414 ha (11.94%) respectively. This is due to the fact that parts of wastelands and fallow lands were brought into cultivation. This increase in the area may be attributed to better utilization of surface and ground waters, adoption of soil and water conservation practices and changes in cropping pattern. The area under waste lands and fallow lands decreased by 1,667 ha (14.07%) and 467 ha (3.94%), respectively. The vegetation vigour of the area was classified into three classes using NDVI. Substantial increase in the area under high and low biomass levels was observed (502 ha and 19 ha respectively). The benefit-cost analysis indicates that the use of remote sensing and GIS was 2.2 times cheaper than the conventional methods. Thus, the repetitive coverage of the satellite data provides an excellent opportunity to monitor the land resources and evaluate the land cover changes through comparison of images for the watershed at different periods.  相似文献   

2.
The land use and land cover pattern of a region is a consequence of natural and socio-economic factors and their utilization by man in time and space. In this study, we hypothesized that land use and land cover change patterns in the Lake Chivero catchment, Zimbabwe, were related to its human population dynamics. Using nonparametric correlation coefficients (Spearman’s rho, ρ), we found that bareland, cropland and built-up land had positive relations with human population growth of ρ = 0.7, ρ = 0.9 and ρ = 1, respectively. Grassland/shrubland, water and forest, on the other hand, had a negative relationship with human population growth of ρ = ?0.9, ρ = ?0.7 and ρ = ?0.667, respectively. However, these relationships were only significant (p < 0.05) for cropland, grassland/shrubland and built-up land. Human population dynamics in the Lake Chivero catchment could be one of the major drivers of land use and land cover change in the catchment between 1986 and 2014.  相似文献   

3.
Rapid land use/land cover changes have taken place in many cities of Turkey. Land use and land cover changes are essential for wide range of applications. In this study, Landsat TM satellite imageries date from 1987, 1993, 2000 and 2010 were used to analyse temporal and spatial changes in the Western Black Sea Region of Turkey. Zonguldak and Eregli two largest and economic important cities which have been active coal mining and iron fabric areas. Maximum Likelihood Classification technique was implemented and the results were represented in classes of open area, forest, agricultural, water, mining, urban and pollution in the sea. Urban areas on both cities increased from 1987 to 2010. The agricultural and open areas from 1987 to 2010 decreased in parallel to land use and land cover change in both cities. Meanwhile, forest areas increased continuously with about 20 % from 1987 to 2010 in both cities. As industrial activity, the coal fields doubled from 1987 to 2010.  相似文献   

4.
The knowledge of the surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change and human-environment interactions. The study analyses land surface temperature (LST) estimation using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) datasets (day time and night time) over National Capital Territory Delhi using the surface emissivity information at pixel level. The spatial variations of LST over different land use/land cover (LU/LC) at day time and night time were analysed and relationship between the spatial distribution of LU/LC and vegetation density with LST was developed. Minimum noise fraction (MNF) was used for LU/LC classification which gave better accuracy than classification with original bands. The satellite derived emissivity values were found to be in good agreement with literature and field measured values. It was observed that fallow land, waste land/bare soil, commercial/industrial and high dense built-up area have high surface temperature values during day time, compared to those over water bodies, agricultural cropland, and dense vegetation. During night time high surface temperature values are found over high dense built-up, water bodies, commercial/industrial and low dense built-up than over fallow land, dense vegetation and agricultural cropland. It was found that there is a strong negative correlation between surface temperature and NDVI over dense vegetation, sparse vegetation and low dense built-up area while with fraction vegetation cover, it indicates a moderate negative correlation. The results suggest that the methodology is feasible to estimate NDVI, surface emissivity and surface temperature with reasonable accuracy over heterogeneous urban area. The analysis also indicates that the relationship between the spatial distribution of LU/LC and vegetation density is closely related to the development of urban heat islands (UHI).  相似文献   

5.
Urban heat islands (UHIs) have attracted attention around the world because they profoundly affect biological diversity and human life. Assessing the effects of the spatial structure of land use on UHIs is essential to better understanding and improving the ecological consequences of urbanization. This paper presents the radius fractal dimension to quantify the spatial variation of different land use types around the hot centers. By integrating remote sensing images from the newly launched HJ-1B satellite system, vegetation indexes, landscape metrics and fractal dimension, the effects of land use patterns on the urban thermal environment in Wuhan were comprehensively explored. The vegetation indexes and landscape metrics of the HJ-1B and other remote sensing satellites were compared and analyzed to validate the performance of the HJ-1B. The results have showed that land surface temperature (LST) is negatively related to only positive normalized difference vegetation index (NDVI) but to Fv across the entire range of values, which indicates that fractional vegetation (Fv) is an appropriate predictor of LST more than NDVI in forest areas. Furthermore, the mean LST is highly correlated with four class-based metrics and three landscape-based metrics, which suggests that the landscape composition and the spatial configuration both influence UHIs. All of them demonstrate that the HJ-1B satellite has a comparable capacity for UHI studies as other commonly used remote sensing satellites. The results of the fractal analysis show that the density of built-up areas sharply decreases from the hot centers to the edges of these areas, while the densities of water, forest and cropland increase. These relationships reveal that water, like forest and cropland, has a significant effect in mitigating UHIs in Wuhan due to its large spatial extent and homogeneous spatial distribution. These findings not only confirm the applicability and effectiveness of the HJ-1B satellite system for studying UHIs but also reveal the impacts of the spatial structure of land use on UHIs, which is helpful for improving the planning and management of the urban environment.  相似文献   

6.
Beijing has experienced rapid urbanization and associated urban heat island effects and air pollution. In this study, a contribution index was proposed to explore the effect of urbanization on land surface temperature (LST) using Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived data with high temporal resolution. The analysis indicated that different zones and landscapes make diurnally and seasonally different contributions to the regional thermal environment. The differences in contributions by the three main functional zones resulted from differences in their landscape compositions. The roles of landscapes in this process varied diurnally and seasonally. Urban land was the most important contributor to increases in regional LSTs. The contributions of cropland and forest varied distinctly between daytime and nighttime owing to differences in their thermal inertias. Vegetation had a notable cooling effect as the normalized vegetation difference index (NDVI) increased during summer. However, when the NDVI reached a certain value, the nighttime LST shifted markedly in other seasons. The results suggest that urban design based on vegetation partitions would be effective for regulating the thermal environment.  相似文献   

7.
At the beginning of the new millennium, after a severe drought and destructive floods along the Yangtze River, the Chinese government implemented two large ecological rehabilitation and reforestation projects: the Natural Forest Protection Programme and the Sloping Land Conversion Programme. Using Landsat data from a decade before, during and after the inception of these programmes, we analyze their impacts along with other policies on land use, land cover change (LULCC) in southwest China. Our goal is to quantify the predominant land cover changes in four borderland counties, home to tens of thousands of ethnic minority individuals. We do this in three time stages (1990, 2000 and 2010). We use support vector machines as well as a transition matrix to monitor the land cover changes. The land cover classifications resulted in an overall accuracy and Kappa coefficient for forested area and cropland of respectively 91% (2% confidence interval) and 0.87. Our results suggest that the total forested area observed increased 3% over this 20-year period, while cropland decreased slightly (0.1%). However, these changes varied over specific time periods: forested area decreased between 1990 and 2000 and then increased between 2000 and 2010. In contrast, cropland increased and then decreased. These results suggest the important impacts of reforestation programmes that have accelerated a land cover transition in this region. We also found large changes in LULC occurring around fast growing urban areas, with changes in these peri-urban zones occurring faster to the east than west. This suggests that differences in socioeconomic conditions and specific local and regional policies have influenced the rates of forest, cropland and urban net changes, disturbances and net transitions. While it appears that a combination of economic growth and forest protection in this region over the past 20 years has been fairly successful, threats like drought, other extreme weather events and land degradation remain.  相似文献   

8.
Temporal changes in the normalized difference vegetation index (NDVI) have been widely used in vegetation mapping due to the usefulness of NDVI data in distinguishing characteristic seasonal differences in the phenology of greenness of vegetation cover. Research has also shown that NDVI provides potential to derive meaningful metrics that describe ecosystem functions. In this paper, we have applied both unsupervised “k-means” classification and supervised minimum distance classification as derived from temporal changes in NDVI measured in 1997 along the North Eastern China Transect (NECT), and we have also utilized the same two classification methods together with NDVI-derived metrics, namely maximum NDVI, mean NDVI, NDVI amplitude, NDVI threshold, total length of growing season, fraction of growing season during greenup, rate of greenup, rate of senescence, integrated NDVI during the growing season, and integrated NDVI during greenup/integrated NDVI during senescence to map vegetation. The main objectives of this study are: (1) to test the relative performance of NDVI temporal profile metrics and NDVI-derived metrics for vegetation cover discrimination in NECT; (2) to test the relative performance of unsupervised (k-means) and supervised (minimum distance) methods for vegetation mapping; (3) to test the accuracy of the IGBP-DIS released land cover map for NECT; (4) to provide an up-to-date vegetation map for NECT. The results suggest that the classifications based on NDVI temporal profile metrics have higher accuracies than those based on any other metrics, such as NDVI-derived metrics, or all (NDVI temporal profile metrics + NDVI-derived metrics), or 15 metrics (NDVI temporal profile + Rate of greenup, Rate of senescence, and Integrated NDVI in greenup/integrated NDVI in senescence) for both methods. And among them, unsupervised k-means classification had the highest overall accuracy of 52% and Kappa coefficient of 0.2057. Both unsupervised (k-means) and supervised (minimum distance) methods achieved similar accuracies for the same metrics. The accuracy of IGBP-DIS released land cover map had an overall accuracy of 37% and a Kappa coefficient is 0.1441, and can improve to 46% by decomposing the crop/natural vegetation mosaic to cropland and other natural vegetation types. The results support using unsupervised k-means classification based on NDVI temporal profile metrics to provide an up-to-date vegetation cover classification. However, new effort is necessary in the future in order to improve the overall performance on this issue.  相似文献   

9.
基于指数分析法的西安市土地利用变化及驱动力研究   总被引:1,自引:0,他引:1  
基于2000和2007年2期TM遥感影像,利用指数分析法,分别提取出归一化差异建筑指数(NDBI)、修正归一化差异水体指数(MNDWI)和归一化差异植被指数(NDVI)3种指数模型,分别代表西安市的3种最主要的土地利用类型--建筑用地、水体和植被.采用神经网络分类器进行监督分类,借助ERDAS Imagine 9.0、ENVI、ArcGIS 9.2和Matlab等软件平台,计算出西安市土地利用类型的动态转移矩阵,构建了土地利用变化动态度指数模型,定量分析西安市土地利用的时空变化.依据研究区土地利用变化的结果分析,变化的驱动力因子主要是人口增长、经济增长和政策变动.  相似文献   

10.
Eight-day composite Terra-MODIS cumulative LST and NDVI timeseries data were used to analyze the responses of crop and grassland cover types to drought in Nebraska. Four hundred ninety 1 km pixels that included irrigated and non-irrigated corn and soybeans and three grassland cover types were selected across the state of Nebraska. Statistical analyses revealed that the majority of the land cover pixels experienced significantly higher daytime and nighttime LSTs and lower NDVI during the drought-year growing season (p < 0.01). Among the land cover types analyzed, grassland experienced the highest increase in daytime LST and decrease in NDVI.  相似文献   

11.
基于遥感和GIS的南充市顺庆区LUCC动态变化分析   总被引:1,自引:0,他引:1  
洪伟  杨武年 《四川测绘》2010,33(3):139-143
利用遥感、地理信息系统技术方法,精确解译顺庆区2000年与2007年两期Landsat-TM遥感影像,获得该地区土地利用/覆被的矢量图及定量统计数据,综合运用动态指标分析了LUCC特征。研究结果表明:该地区的耕地、林地和建设用地是LUCC的核心类型,三者面积之和超过研究区总面积的90%。7年间土地利用/覆被变化速度较快,耕地面积逐年减少,林地和建设用地面积显著增加,草地、水域则有少许减少。这些分析结果为查明该区土地利用及变化情况,揭示其中存在的问题,相关部门制定国土规划提供了科学依据。  相似文献   

12.
采用灰度比值法、归一化植被覆盖法(NDVI)及主成分分析法(PCA)和分类后比较法对老挝万象1999年和2006年的地表覆盖变化/土地利用变化进行了分析比较实验。实验表明,灰度比值法、归一化植被覆盖法(NDVI)及主成分分析法变化信息提取的组合结果明显优于分类后比较法,因此作者选取组合方法的变化信息提取结果,分析了老挝万象1999年和2006年土地利用变化情况,得到变化分布图和统计表。研究表明,老挝万象1999年和2006年城市得到大规模扩张(城市面积增长71%),而农业、林地、水体面积都明显减少。  相似文献   

13.
基于遥感和GIS的中国土地利用/土地覆盖的现状研究   总被引:108,自引:0,他引:108  
通过利用土地利用程度指数和植被指数等指标。采用GIS工具和数学模型方法,对中国土地利用/土地覆盖的现状进行分析,结论为:中国现有土 况代表着中国总的土地利用程度指数为202的一种开发利用水平。从土地利用程度指数极限为400看,中国土地资源总的开发程度仅达开发极限的一半;东部湿润区以耕地型覆盖为主,开发利用程度高;  相似文献   

14.
Changes in landscape composition and configuration patterns of Sancaktepe Municipal District in the Asian side of Istanbul Metropolitan City of Turkey were analysed using landscape metrics. Class-level and landscape-level metrics were calculated from the land cover/land use data using Patch Analyst, an extension in the Arc View GIS. The land cover/land use data were derived from classified satellite images of Landsat Thematic Mapper of 2002 and 2009 for Sancaktepe District. There was evidence of increase in agglomeration process of built-up patches as indicated by the increases in mean patch size, decrease in total edge and number of patches between 2002 and 2009. The urban expansion pattern experienced overall was not fragmented but concentrated due to infilling around existing patches. Changes in Area-Weighted Mean Shape Index and Area-Weighted Patch Fractal Dimension Index indicated that the physical shapes within built-up, forest and bareland areas were relatively complex and irregular. A conclusion is made in this study that spatial metrics are useful tools to describe the urban landscape composition and configuration in its various aspects and certain decisions whether to approve a specific development in urban planning could, for example, be based on some measures of urban growth form or pattern in terms of uniformity and irregularity, attributable to the dynamic processes of agglomeration and fragmentation of land cover/land use patches caused by urban expansion.  相似文献   

15.
基于TM影像的城市建筑用地信息提取方法研究   总被引:2,自引:0,他引:2  
本文选用金华市Landsat TM影像为研究的数据源,在归一化裸露指数基础上,利用归一化植被指数提取出非植被信息,通过图像二值化、叠加分析以及掩膜处理去除了低密度植被覆盖区域的噪音信息,自动提取了金华城市建筑用地信息。研究结果表明,归一化裸露指数和归一化植被指数相结合的方法弥补了单一利用归一化裸露指数来提取城市建筑用地信息的不足,提高了提取精度,而且结果客观可信,是一种不经人为干预的、快速有效的提取城市建筑用地方法。  相似文献   

16.
This study uses a multiple linear regression method to composite standard Normalized Difference Vegetation Index (NDVI) time series (1982-2009) consisting of three kinds of satellite NDVI data (AVHRR, SPOT, and MODIS). This dataset was combined with climate data and land cover maps to analyze growing season (June to September) NDVI trends in northeast Asia. In combination with climate zones, NDVI changes that are influenced by climate factors and land cover changes were also evaluated. This study revealed that the vegetation cover in the arid, western regions of northeast Asia is strongly influenced by precipitation, and with increasing precipitation, NDVI values become less influenced by precipitation. Spatial changes in the NDVI as influenced by temperature in this region are less obvious. Land cover dynamics also influence NDVI changes in different climate zones, especially for bare ground, cropland, and grassland. Future research should also incorporate higher-spatial-resolution data as well as other data types (such as greenhouse gas data) to further evaluate the mechanisms through which these factors interact.  相似文献   

17.
18.
Abstract

Characterisation and mapping of land cover/land use within forest areas over long-multitemporal intervals is a complex task. This complexity is mainly due to the location and extent of such areas and, as a consequence, to the lack of full continuous cloud-free coverage of those large regions by one single remote sensing instrument. In order to provide improved long-multitemporal forest change detection using Landsat MSS and ETM + in part of Mt. Kenya rainforest, and to develop a model for forest change monitoring, wavelet transforms analysis was tested against the ISOCLUS algorithm for the derivation of changes in natural forest cover, as determined using four simple ratio-based Vegetation Indices: Simple Ratio (SR), Normalised Difference Vegetation Index (NDVI), Renormalised Difference Vegetation Index (RDVI) and modified simple ratio (MSR). Based on statistical and empirical accuracy assessments, RDVI presented the optimal index for the case study. The overall accuracy statistic of the wavelet derived change/no-change was used to rank the performances of the indices as: RDVI (91.68%), MSR (82.55%), NDVI (79.73%) and SR (65.34%). The integrated discrete wavelet transform–ISOCLUS (DWT–ISOCLUS) result was 42.65% higher than the independent ISOCLUS approach in mapping the change/no-change information. The methodology suggested in this study presents a cost-effective and practical method to detect land-cover changes in support of decision-making for updating forest databases, and for long-term monitoring of vegetation changes from multisensor imagery. The current research contributes to Digital Earth with regards to geo-data acquisition, data mining and representation of one forest systems.  相似文献   

19.
Land surface temperature (LST) of Beijing area was retrieved from Landsat TM thermal band data utilizing a radiative transfer equation and the urban heat island (HUI) effects of Beijing and its relationship with land cover and normalized difference vegetation index (NDVI) were discussed. The result of LST showed that the urban LST was evidently higher than the suburban one. The average urban LST was found to 4. 5°C and 9°C higher than the suburban and outer suburban temperature, respectively, which demonstrated the prominent UHI effects in Beijing. Prominent negative correlation between LST and NDVI was found in the urban area, which suggested the low percent vegetation cover in the urban area was the main cause of the urban heat island.  相似文献   

20.
The vegetation dynamics and land use/land cover types of Birantiya Kalan watershed located in the arid tracts of western Rajasthan have been characterized and evaluated using Remote Sensing and Geographical Information System (GIS). The watershed under study falls in the transitional plain of Luni Basin and is characterized by Aravali ranges in the eastern half and vast alluvial plains in the west. The land use/land cover types, as identified are cropland, fallow, forest, land with scrub, land without scrub, sandy area and the water body. Land with scrub occupied maximum area (39% area of the watershed) in 1996 in place of crop land which was dominant (43% of total area) in the year 1988. During eight years period, seasonal fallow land increased significantly and the areal extent of water body decreased to almost half. Vegetation vigour types have been classified into very poor, poor. moderate, good and very good categories. Moderate vigour type reduced from 62 to 27% and poor type increased from 34 to 68% during the period 1988 to 1996. Other vegetation vigour types have not shown any significant changes. To quantify the changes over the years in both vegetation and land use/land cover, weightages have been given to each type and composite values of both vegetation vigour and land use types for 1996 and 1988 have been calculated. It has been observed that the ratio for vegetation vigour has been found to be 0.85 showing that the overall vegetation have not improved after the treatment. The ratio for land use is found to be 1.01, which indicates negligible change in land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号