首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
The presence of glacial sediments across the Rauer Group indicates that the East Antarctic ice sheet formerly covered the entire archipelago and has since retreated at least 15 km from its maximum extent. The degree of weathering of these glacial sediments suggests that ice retreat from this maximum position occurred sometime during the latter half of the last glacial cycle. Following this phase of retreat, the ice sheet margin has not expanded more than ∼ 1 km seaward of its present position. This pattern of ice sheet change matches that recorded in Vestfold Hills, providing further evidence that the diminutive Marine Isotope Stage 2 ice sheet advance in the nearby Larsemann Hills may have been influenced by local factors rather than a regional ice-sheet response to climate and sea-level change.  相似文献   

2.
We use the radiocarbon ages of marine shells and terrestrial vegetation to reconstruct relative sea level (RSL) history in northern Southeast Alaska. RSL fell below its present level around 13,900 cal yr BP, suggesting regional deglaciation was complete by then. RSL stayed at least several meters below modern levels until the mid-Holocene, when it began a fluctuating rise that probably tracked isostatic depression and rebound caused by varying ice loads in nearby Glacier Bay. This fluctuating RSL rise likely reflects the episodic but progressive advance of ice in Glacier Bay that started around 6000 cal yr BP. After that time, RSL low stands probably signaled minor episodes of glacier retreat/thinning that triggered isostatic rebound and land uplift. Progressive, down-fjord advance of the Glacier Bay glacier during the late Holocene is consistent with the main driver of this glacial system being the dynamics of its terminus rather than climate change directly. Only after the glacier reached an exposed position protruding into Icy Strait ca. AD 1750, did its terminus succumb - a century before the climate changes that marked the end of the Little Ice Age - to the catastrophic retreat that triggered the rapid isostatic rebound and RSL fall occurring today in Icy Strait.  相似文献   

3.
The Late Quaternary climate history of the Larsemann Hills has been reconstructed using siliceous microfossils (diatoms, chrysophytes and silicoflagellates) in sediment cores extracted from three isolation lakes. Results show that the western peninsula, Stornes, and offshore islands were ice‐covered between 30 000 yr BP and 13 500 cal. yr BP. From 13 500 cal. yr BP (shortly after the Antarctic Cold Reversal) the coastal lakes of the Larsemann Hills were deglaciated and biogenic sedimentation commenced. Between 13 500 and 11 500 cal. yr BP conditions were warmer and wetter than during the preceding glacial period, but still colder than today. From 11 500 to 9500 cal. yr BP there is evidence for wet and warm conditions, which probably is related to the early Holocene climate optimum, recorded in Antarctic ice cores. Between 9500 and 7400 cal. yr BP dry and cold conditions are inferred from high lake‐water salinities, and low water levels and an extended duration of nearshore sea‐ice. A second climate optimum occurred between 7400 and 5230 cal. yr BP when stratified, open water conditions during spring and summer characterised the marine coast of Prydz Bay. From 5230 until 2750 cal. yr BP sea‐ice duration in Prydz Bay increased, with conditions similar to the present day. A short return to stratified, open water conditions and a reduction in nearshore winter sea‐ice extent is evident between 2750 and 2200 cal. yr BP. Simultaneously, reconstructions of lake water depth and salinity suggests relatively humid and warm conditions on land between 3000 and 2000 cal. yr BP, which corresponds to a Holocene Hypsithermal reported elsewhere in Antarctica. Finally, dry conditions are recorded around 2000, between 760 and 690, and between 280 and 140 cal. yr BP. These data are consistent with ice‐core records from Antarctica and support the hypothesis that lacustrine and marine sediments on land can be used to evaluate the effect of long‐term climate change on the terrestrial environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Relative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300-9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt.  相似文献   

6.
New relative sea-level (RSL) data from Disko Bugt, a large marine embayment in West Greenland, are used to examine the deglacial history of the Jakobshavns Isbrae ice stream. RSL data show rapid deglaciation after 10.3 ka cal. yr BP. Once deglaciation began, a bedrock high in the west of the bay exerted no discernible influence on the deglacial chronology. Following initial rapid retreat, ice stream recession slowed as it approached the eastern shores of the bay. Seabed elevations increase here and the ice stream terminus lingered for several thousand years before retreating into the narrow bedrock-confined Jakobshavns Isfjord. The seabed topography of Disko Bugt includes several deep channels which probably record the former course of the ice stream. Using a simple water depth/calving velocity relationship it is estimated that the maximum calving velocity on deglaciation was c. 4.8 km a-1. This is less than the present rate (6–7 km a-1), although ice discharge was two to four times that observed today. Initiation of rapid ice stream retreat was probably caused by ice stream thinning and increased surface melting. A critical point in time was the retreat of the ice stream from shallow continental shelf waters ( c. 400 m) into the deep bedrock trough (>800 m) which marks the entrance to Disko Bugt.  相似文献   

7.
Little is known about the response of terrestrial East Antarctica to climate changes during the last glacial-interglacial cycle. Here we present a continuous sediment record from a lake in the Larsemann Hills, situated on a peninsula believed to have been ice-free for at least 40,000 yr. A mutli-proxy data set including geochronology, diatoms, pigments and carbonate stable isotopes indicates warmer and wetter conditions than present in the early part of the record. We interpret this as Marine Isotope Stage 5e after application of a chronological age-depth model and similar ice core evidence. Dry and cold conditions are inferred during the last glacial, with lake-level minima, floristic changes towards a shallow water algal community, and a greater biological receipt of ultraviolet radiation. During the Last Glacial Maximum and Termination I the lake was perennially ice-covered, with minimal snowmelt in the catchment. After ca. 10,500 cal yr B.P., the lake became seasonally moated or ice-free during summer. Despite a low accumulation rate, the sediments document some Holocene environmental changes including neoglacial cooling after ca. 2450 cal yr B.P., and a gradual increase in aridity and salinity to the present.  相似文献   

8.
Here we present new relative sea-level (RSL) curves developed from Holocene-aged raised beaches along the southern Scott Coast of the western Ross Sea, Antarctica. Fifty-four dates of marine shells, seal skin and elephant seal remains incorporated within raised beaches during storms afford a chronology for these curves. All of the curves show the same pattern and timing of RSL change within a small range of error. The best-dated curve suggests that final unloading of grounded Ross Sea ice from the southern Scott Coast and McMurdo Sound region occurred shortly before 6500 14C yr BP. This age is consistent with glacial geological evidence that places deglaciation between 5730 and 8340 14C yr BP. Our data strongly suggest that grounding-line retreat of the Ross Sea ice sheet southward through the McMurdo Sound region occurred in mid- and late Holocene time. If this is correct, then rising sea level could not have driven ice recession to the present-day grounding line on the Siple Coast, because global deglacial sea-level rise was essentially accomplished by mid-Holocene time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Understanding the nature of global ice-equivalent eustatic sea-level changes during the mid to late Holocene is important to our understanding of how ice sheets will respond to future climate change. This study re-analyses the indicative meaning and age control of existing relative sea-level (RSL) data from Cleveland Bay, North Queensland, Australia and presents new RSL data from a foraminifera-based transfer function as a preliminary test of global geophysical models in this region during the mid to late Holocene. The foraminifera-based transfer function produces reliable RSL estimates, consistent through the mid to late Holocene at different locations in Cleveland Bay. Analysis of the combined RSL database reveals that RSL rose above present between 8 and 6.2 ka cal. BP, with the peak of the sea-level highstand c. 2.8 m above present at c. 5 ka cal. BP, remaining relatively stable above +1.5 m from 6.2 until at least 2.3 ka cal. BP, falling to present in the last millennia. This long period of sea level above present in the mid to late Holocene suggests a gradual rather than abrupt end to global ice melt, which must have continued into the late Holocene. This new analysis also shows no evidence for episodic fluctuations within the highstand, although they cannot be entirely ruled out by this study. This study demonstrates that more sea-level data needs to be collected from locations uncontaminated by glacio-isostasy, hydro-isostasy and tectonic effects, in order to better constrain the late Holocene melt histories of the large polar ice sheets.  相似文献   

10.
ABSTRACT Thermobarometric studies on various granulite facies areas along the Prydz Bay coast, East Antarctica (73°-79°E, 68°-70°S), show that, at around 1100 Ma, during a late Proterozoic orogeny, the rocks of the Larsemann Hills suffered a lower pressure metamorphic peak than the surrounding areas. Along the Prydz Bay coast, the rocks affected by this event include parts of the Vestfold Hills block plus all of the Rauer Group, the Larsemann Hills and the Munro Kerr Mountains. The dykes in the south-west corner of the Vestfold Hills were recrystallized during this event with little deformation at temperatures not quite as high as in the areas further south-west (650°C, 6.5 kbar) (Collerson et al., 1983), the Rauer Group was metamorphosed at 800°C and 7.5 kbar (Harley, 1987a), the Larsemann Hills at 750°C and 4.5 kbar, and the Munro Kerr Mountains probably at around 850°C and 5 kbar. Retrograde equilibration in the different areas occurred during decompression to about 10 km depth in all areas, followed by isobaric cooling at this depth. This paper shows that the peak metamorphism in the Larsemann Hills occurred at a pressure which is too low to have been the consequence of thermal relaxation of overthickened crust with normal mantle heat flow. Although other areas in Prydz Bay were metamorphosed at sufficiently high pressures so that their decompression paths are not inconsistent with a continental collision model, the inferred pre-metamorphic peak histories and the requirement of consistency with the Larsemann Hills, make it unlikely that collision followed by erosion-driven decompression is an appropriate model. We suggest that the thermal regime of the crust in the Larsemann Hills region was controlled by a perturbation in the asthenosphere, with magma invasion of the crust. We suggest that the 500 Ma event, represented in Prydz Bay by granitic outcrops at Landing Bluff and by several K/Ar ages from the Larsemann Hills area, was responsible for the final excavation of the terrane.  相似文献   

11.
<正>Considerable controversy exists over whether or not extensive glaciation occurred during the global Last Glacial Maximum(LGM) in the Larsemann Hills.In this study we use the in situ produced cosmogenic nuclide ~(10)Be(half life 1.51 Ma) to provide minimum exposure ages for six bedrock samples and one erratic boulder in order to determine the last period of deglaciation in the Larsemann Hills and on the neighboring Bolingen Islands.Three bedrock samples taken from Friendship Mountain(the highest peak on the Mirror Peninsula,Larsemann Hills;~2 km from the ice sheet) have minimum exposure ages ranging from 40.0 to 44.7 ka.The erratic boulder from Peak 106(just at the edge of the ice sheet) has a younger minimum exposure age of only 8.8 ka.The minimum exposure ages for two bedrock samples from Blundell Peak(the highest peak on Stornes Peninsula,Larsemann Hills;~2 km from the ice sheet) are about 17 and 18 ka.On the Bolingen Islands(southwest to the Larsemann Hills;~10 km from the ice sheet),the minimum exposure age for one bedrock sample is similar to that at Friendship Mountain(i.e.,44 ka).Our results indicate that the bedrock exposure in the Larsemann Hills and on the neighboring Bolingen Islands commenced obviously before the global LGM(i.e.,20-22 ka),and the bedrock erosion rates at the Antarctic coast areas may be obviously higher than in the interior land.  相似文献   

12.
The recent disintegration of Antarctic Peninsula ice shelves, and the associated accelerated discharge and retreat of continental glaciers, has highlighted the necessity of quantifying the current rate of Antarctic ice mass loss and the regional contributions to future sea-level rise. Observations of present day ice mass change need to be corrected for ongoing glacial isostatic adjustment, a process which must be constrained by geological data. However, there are relatively little geological data on the geometry, volume and melt history of the Antarctic Peninsula Ice Sheet (APIS) after Termination 1, and during the Holocene so the glacial isostatic correction remains poorly constrained. To address this we provide field constraints on the timing and rate of APIS deglaciation, and changes in relative sea-level (RSL) for the north-eastern Antarctic Peninsula based on geomorphological evidence of former marine limits, and radiocarbon-dated marine-freshwater transitions from a series of isolation basins at different altitudes on Beak Island. Relative sea-level fell from a maximum of c. 15 m above present at c. 8000 cal yr BP, at a rate of 3.91 mm yr?1 declining to c. 2.11 mm yr?1 between c. 6900–2900 cal yr BP, 1.63 mm yr?1 between c. 2900–1800 cal yr BP, and finally to 0.29 mm yr?1 during the last c. 1800 years. The new Beak Island RSL curve improves the spatial coverage of RSL data in the Antarctic. It is in broad agreement with some glacio-isostatic adjustment models applied to this location, and with work undertaken elsewhere on the Antarctic Peninsula. These geological and RSL constraints from Beak Island imply significant thinning of the north-eastern APIS by the early Holocene. Further, they provide key data for the glacial isostatic correction required by satellite-derived gravity measurements of contemporary ice mass loss, which can be used to better assess the future contribution of the APIS to rising sea-levels.  相似文献   

13.
A 467-cm-long core from the inner shelf of the eastern Laptev Sea provides a depositional history since 9400 cal yr. B.P. The history involves temporal changes in the fluvial runoff as well as postglacial sea-level rise and southward retreat of the coastline. Although the core contains marine fossils back to 8900 cal yr B.P., abundant plant debris in a sandy facies low in the core shows that a river influenced the study site until 8100 cal yr B.P. As sea level rose and the distance to the coast increased, this riverine influence diminished gradually and the sediment type changed, by 7400 cal yr B.P., from sandy silt to clayey silt. Although total sediment input decreased in a step-like fashion from 7600 to 4000 cal yr B.P., this interval had the highest average sedimentation rates and the greatest fluxes in most sedimentary components. While this maximum probably resulted from middle Holocene climate warming, the low input of sand to the site after 7400 cal yr B.P. probably resulted from further southward retreat of the coastline and river mouth. Since about 4000 cal yr B.P., total sediment flux has remained rather constant in this part of the Laptev Sea shelf due to a gradual stabilization of the depositional regime after completion of the Holocene sea-level rise.  相似文献   

14.
Romundset, A., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. 2009: The first Holocene relative sea-level curve from the middle part of Hardangerfjorden, western Norway. Boreas , 10.1111/j.1502-3885.2009.00108.x. ISSN 0300-9483.
The first relative sea-level (RSL) curve from the mid-Hardangerfjorden area covering the entire Holocene is presented. The curve is based on a series of AMS 14C dates on terrestrial plant macrofossils across the isolation level in each of five lakes located between 3.5 and 74.5 m a.s.l. During the first 1200 years, the RSL fell very rapidly from the marine limit at 98 m a.s.l. to 33 m a.s.l., i.e. at a rate of 5.4 cm yr−1. The emergence rate then slowed considerably and was close to standstill 8000–6500 cal. yr BP. However, an emergence of 16.5 m has taken place during the past 6000 years. Radiocarbon dates of terrestrial plant macrofossils from the basal strata in a lake above the marine limit and mollusc shells from glaciomarine silt in the isolation basins yielded a mean age for the local ice-margin retreat of 11 300 cal. yr BP. This verifies that Hardangerfjorden was glaciated during the Younger Dryas – an interpretation that has recently been disputed. The ice margin retreated at a rate of about 300 m yr−1 from the position of the Younger Dryas moraine to this site some 60 km further into the fjord.  相似文献   

15.
Application of dendrochronology and geomorphology to a recently emerged coastal area near Juneau, Alaska, has documented a Little Ice Age (LIA) sea-level transgression to 6.2 m above current sea level. The rise in relative sea level is attributed to regional subsidence and appears to have stabilized by the mid 16th century, based on a sea-cliff eroded into late-Pleistocene glaciomarine sediments. Land began emerging between A.D. 1770 and 1790, coincident with retreat of regional glaciers from their LIA maximums. This emergence has continued since then, paralleling regional glacier retreat. Total Juneau uplift since the late 18th century is estimated to be 3.2 m. The rate of downward colonization of newly emergent coastline by Sitka spruce during the 20th century closely parallels the rate of sea-level fall documented by analysis of local tide-gauge records (1.3 cm/yr). Regional and Glacier Bay LIA loading and unloading are inferred to be the primary mechanisms driving subsidence and uplift in the Juneau area. Climate change rather then regional tectonics has forced relative sea-level change over the last several hundred years.  相似文献   

16.
We present results from an investigation of relative sea-level changes in the Qaqortoq area in south Greenland from c. 11 000 cal. yr BP to the present. Isolation and transgression sequences from six lakes and two tidal basins have been identified using stratigraphical analyses, magnetic susceptibility, XRF and macrofossil analyses. Macrofossils and bulk sediments have been dated by AMS radiocarbon dating. Maximum and minimum altitudes for relative sea level are provided from two deglaciation and marine lagoon sequences. Initially, relative sea level fell rapidly and reached present-day level at ∼9000 cal. yr BP and continued falling until at least 8800 cal. yr BP. Between 8000 and 6000 cal. yr BP, sea level reached its lowest level of around 6-8 m below highest astronomical tide (h.a.t.). At around 3750 cal. yr BP, sea level has reached above 2.7 m below h.a.t. and continued to rise slowly, reaching the present-day level between ∼2000 cal. yr BP and the present. As in the Nanortalik area further south, initial isostatic rebound caused rapid isolation of low elevation basins in the Qaqortoq area. Distinct isolation contacts in the sediments are observed. The late Holocene transgression is less well defined and occurred over a longer time interval. The late Holocene sea-level rise implies reloading by advancing glaciers superimposed on the isostatic signal from the North American Ice Sheet. One consequence of this transgression is that settlements of Palaeo-Eskimo cultures from ∼4000 cal. yr BP may have been transgressed by the sea.  相似文献   

17.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
AMS-dated sediment cores combined with ground-penetrating radar profiles from two lakes in southeastern Massachusetts demonstrate that regional water levels rose and fell multiple times during the Holocene when the known climatic controls (i.e., ice extent and insolation) underwent unidirectional changes. The lakes were lowest between 10,000 and 9000 and between 5500 and 3000 cal yr B.P. Using a heuristic moisture-budget model, we explore the hypothesis that changes in seasonal precipitation regimes, driven by monotonic trends in ice extent and insolation, plausibly explain the multiple lake-level changes. Simulated lake levels resulting from low summer precipitation rates match observed low lake levels of 10,000-9000 cal yr B.P., whereas a model experiment that simply shifts the seasonality of the modern Massachusetts precipitation regime (i.e., moving the peak monthly precipitation from winter to summer) produces levels that are ∼2 m lower than today as observed for 5500-3000 cal yr B.P. The influence of the Laurentide ice sheet could explain dry summers before ca. 8000 cal yr B.P. A later shift from a summer-wet to a winter-wet moisture-balance regime could have resulted from insolation-driven changes in the influence of the Bermuda subtropical high. Temperature changes probably further modified lake levels by affecting snowmelt and transpiration.  相似文献   

19.
New relative sea-level (RSL) data constrain the timing and magnitude of RSL changes in the southern Isle of Skye following the Last Glacial Maximum (LGM). We identify a marine limit at ~23 m OD, indicating RSL ~20 m above present c. 15.1 ka. Isolation basin data, supported by terrestrial and marine limiting dates, record an RSL fall to 11.59 m above present by c. 14.2 ka. This RSL fall occurs across the time of global Meltwater Pulse 1A, supporting recent research on the sources of ice melting. Our new data also help to resolve some of the chronological issues within the existing Isle of Skye RSL record and provide details of the sub-Arctic marine environment associated with the transition into Devensian Lateglacial climate at c. 14.5 k cal a bp , and the timing of changes in response to the Loch Lomond Stadial climate. Glacio-isostatic adjustment (GIA) model predictions of RSL deviate from the RSL constraints and reflect uncertainties in local and global ice models used within the GIA models. An empirical RSL curve provides a target for future research.  相似文献   

20.
Calibrated radiocarbon dates of organic matter below and above till of the last (Fraser) glaciation provide limiting ages that constrain the chronology and duration of the last advance–retreat cycle of the Puget Lobe in the central and southeastern Puget Lowland. Seven dates for wood near the top of a thick proglacial delta have a weighted mean age of 17,420 ± 90 cal yr B.P., which is the closest limiting age for arrival of the glacier near the latitude of Seattle. A time–distance curve constructed along a flowline extending south from southwestern British Columbia to the central Puget Lowland implies an average glacier advance rate of ca. 135 m/yr. The glacier terminus reached its southernmost limit ca. 16,950 yr ago and likely remained there for ca. 100 yr. In the vicinity of Seattle, where the glacier reached a maximum thickness of 1000 m, ice covered the landscape for ca. 1020 yr. Postglacial dates constraining the timing of ice retreat in the central lowland are as old as 16,420 cal yr B.P. and show that the terminus had retreated to the northern limit of the lowland within three to four centuries after the glacial maximum. The average rate of retreat was about twice the rate of advance and was enhanced by rapid calving recession along flowline sectors where the glacier front crossed deep proglacial lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号