首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Southwestern Finland was covered by the Weichselian ice sheet and experienced rapid glacio-isostatic rebound after early Holocene deglaciation. The present mean overall apparent uplift rate is of the order of 4-5 mm/yr, but immediately after deglaciation the rate of crustal rebound was several times higher. Concurrently with land uplift, relative sea level in the Baltic basin during the past more than 8000 years was also strongly affected by the eustatic changes in sea level. There is ample evidence from earlier studies that during the early Litorina Sea stage on the southeastern coast of Finland around 7000 yr BP (7800 cal. yr BP), the rise in sea level exceeded the rate of land uplift, resulting in a short-lived transgression. Because of a higher rate of uplift, the transgression was even more short-lived or of negligible magnitude in the southwestern part of coastal Finland, but even in this latter case a slowing down in the rate of regression can still be detected. We used evidence from isolation basins to obtain a set of 71 14C dates, and over 30 new sea-level index points. The age-elevation data, obtained from lakes in two different areas and located between c. 64 m and 1.5 m above present sea level, display a high degree of internal consistency. This suggests that the dates are reliable, even though most of them were based on bulk sediment samples. The two relative sea-level curves confirm the established model of relatively gradually decreasing rates of relative sea-level lowering since c. 6100 yr BP (7000 cal. yr BP) and clearly indicate that the more northerly of the two study areas experienced the higher rate of glacio-isostatic recovery. In the southerly study area, changes in diatom assemblages and lithostratigraphy suggest that during the early Litorina Sea stage (8300-7600 cal. yr BP) eustatic sea-level rise exceeded land uplift for hundreds of years. Evidence for this transgression was discovered in a lake with a basin threshold at an elevation of 41 m above sea level, which is markedly higher than any previously known site with evidence for the Litorina transgression in Finland. We also discuss evidence for subsequent short-term fluctuations superimposed on the main trends of relative sea-level changes.  相似文献   

3.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Thirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.  相似文献   

5.
Shennan  Ian  Tooley  Michael  Green  Frances  Innes  Jim  Kennington  Kevin  Lloyd  Jeremy  Rutherford  Mairead 《Geologie en Mijnbouw》1998,77(3-4):247-262
Analyses of geomorphologically contrasting sites in Morar, NW Scotland, describe the forcing mechanisms of coastal change. Isolation basins (i.e. basins behind rock sills and now isolated from the sea following isostatic uplift) accumulated continuous marine and freshwater sediments from c.12 to 2 ka BP. Raised dune, marsh and wetland sites register breaching, migration and stability of dunes from c. 9 to 2 ka BP. High-resolution methods designed to address issues of macroscale and microscale sea-level changes and patterns of storminess include 1-mm sampling for pollen, dinocyst and diatom analyses, infra-red photography, X-ray photography and thin-section analysis. The data enhance the record of relative sea-level change for the area. Major phases of landward migration of the coast occurred during the period of low sea-level rise in the mid-Holocene as the rate of rise decreased from c. 3 to < 1 mm/year. Relative sea-level change controls the broad pattern of coastal evolution at each site; local site-specific factors contribute to short-term process change. There is no record of extreme events such as tsunami. Within a system of dynamic metastable equilibrium, the Holocene records show that site-specific factors determine the exact timing of system breakdown, e.g. dune breaching, superimposed on regional sea-level rise. The global average sea-level rise of 3 to 6 mm/yr by AD 2050 predicted by IPCC would only partly be offset in the Morar area by isostatic uplift of about 1 mm/yr. A change from relative sea-level fall to sea-level rise, in areas where the regional rate of uplift no longer offsets global processes, is a critical factor in the management of coastal resources.  相似文献   

6.
Bracketing ages on marine—freshwater transitions in isolation basins extending from sea level to 100 m elevation on Lasqueti Island, and data from shallow marine cores and outcrops on eastern Vancouver Island, constrain late Pleistocene and Holocene sea-level change in the central Strait of Georgia. Relative sea level fell from 150 m elevation to about —15 m from 14000 cal. yr BP to 11 500 cal. yr BP. Basins at higher elevations exhibit abrupt changes in diatom assemblages at the marine-freshwater transition. At lower elevations an intervening brackish phase suggests slower rates of uplift. Relative sea level rose to about +1 m about 9000 cal. yr BP to 8500 cal. yr BP, and then slowly fell to the modern datum. The mean rate of glacio-isostatic rebound in the first millennium after deglaciation was about 0.11 in a -1, similar to the peak rate at the centres of the former Laurentide and Fennoscandian ice complexes. The latter feature smooth, exponential-style declines in sea level up to the present day, whereas in the study area the uplift rate dropped to less than one-tenth of its initial value in only about 2500 years. Slower, more deeply seated isostatic recovery generated residual uplift rates of <0.01 m a-1 in the early Holocene after the late-Pleistocene wasting of the Cordilleran ice sheet.  相似文献   

7.
Rundgren, M., Ingólfsson, Ó., Björck, S., Jiang, H. & Haflioason, H. 1997 (September): Dynamic sea-level change during the last deglaciation of northern Iceland. Boreas , Vol. 26, pp. 201–215. Oslo. ISSN 0300–9483.
A detailed reconstruction of deglacial relative sea-level changes at the northern coast of Iceland, based on the litho- and biostratigraphy of lake basins, indicates an overall fall in relative sea level of about 45 m between 11300 and 9100 BP, corresponding to an isostatic rebound of 77 m. The overall regression was interrupted by two minor transgressions during the late Younger Dryas and in early Preboreal, and these were probably caused by a combination of expansions of local ice caps and readvances of the Icelandic inland ice-sheet margin. Maximum absolute uplift rates are recorded during the regressional phase between the two transgressions (10000–9850 BP), with a mean value of c . 15 cm 14C yr-1 or 11–12 cm cal. yr-1. Mean absolute uplift during the regressional phase following the second transgression (9700–9100 BP) was around 6 cm 14C yr-1, corresponding to c . 3 cm cal. yr-1, and relative sea level dropped below present-day sea level at 9000 BP.  相似文献   

8.
The coastal zone of Norrbotten, northern Sweden, was gradually inundated by the Ancylus Lake following the retreating ice margin and forming a highest coastline approximately 210 m above the present sea level. The succeeding shore displacement is reconstructed based on lithological investigations and radiocarbon datings of identified isolation sequences from 12 cored lake basins. The highest lake basins, along with two basins above the highest shoreline, suggest ice-free conditions already at 10 500 cal. yr BP. This is at least 500 years earlier than previously thought and implies rapid ice-sheet break-up in the Gulf of Bothnia. The shore displacement (RSL) curve represents a forced regression of successively decreasing rate through the Holocene, from 9 m/100 yr to 0.8 m/100 yr. During the first 1000-1200 years, the isostatic uplift is exponentially declining, followed by a constant uplift rate from c. 9500 cal. yr BP to 5500-5000 cal. yr BP. The last 5000 years seem to be characterized by a low but constant rebound rate. The development of the Ancylus Lake stage of the Baltic may also be discerned in the Norrbotten RSL curve, suggesting that the chronology of the Ancylus Lake stages may have to be revised. The Littorina transgression is also reflected by the RSL curve shape. In addition, a series of early to mid-Holocene beach terraces were OSL-dated to allow for comparison with the 14C-dated shore displacement curve. Interpretations of these ages and their relation to former sea levels were clearly more problematic than the dating of the lake basin isolations.  相似文献   

9.
Previous sea‐level studies suggest that southwest Britain has the fastest subsiding coastline in the United Kingdom, but tide‐gauge data, GPS and gravity measurements and geophysical models show little evidence of anomalous subsidence in this region. In this paper we present 15 new sea‐level index points from four coastal barrier systems in south Devon. Eight are from compaction‐free basal sediments and others were corrected for autocompaction. Our data suggest that relative sea level along the south Devon coastline has risen by 21 ± 4 m during the past 9000 years. Sea‐level rise slowed during the middle and late Holocene and a rise of 8 ± 1 m has occurred since ca. 7000 cal. yr BP. Anomalous ages for many rejected points are attributed to sediment reworking during barrier transgression. The relative sea‐level history during the early and middle Holocene shows a good fit with geophysical model predictions, but the geological and modelled data diverge in the later Holocene. Unlike the geophysical models, sea‐level index points cannot differentiate between late Holocene relative sea‐level histories of south Devon and southwest Cornwall. It is suggested that this discrepancy can be resolved by obtaining additional high‐quality sea‐level index points covering the past 4000 years. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Cores from the salt marshes along the drowned melt-water valley of river Varde Å in the Danish Wadden Sea have been dated and analysed (litho- and biostratigraphically) to reconstruct the Holocene geomorphologic evolution and relative sea level history of the area. The analysed cores cover the total post-glacial transgression, and the reconstructed sea level curve represents the first unbroken curve of this kind from the Danish Wadden Sea, including all phases from the time where sea level first reached the Pleistocene substrate of the area. The sea level has been rising from − 12 m below the present level at c. 8400 cal yr BP, interrupted by two minor drops of < 0.5 m at c. 5500 cal yr BP and 1200 cal yr BP, and one major drop of ∼ 1.5 m at c. 3300 cal yr BP. Sediment deposition has been able to keep pace with sea level rise, and the Holocene sequence consists in most places of clay atop a basal peat unit overlying sand of Weichselian age and glacio-fluvial origin. In its deepest part, the basal peat started to form around 8400 cal yr BP, and reached a thickness of up to 3.5 m. This thickness is about half of the original, when corrected for auto-compaction. The superimposed clay contains small (63-355 μm) red iron stains in the top and bottom units, and foraminifers of the calcareous type in the middle. The fact that iron stains and foraminifers in no cases coexist, but always exclude each other is interpreted as a result of the difference between salt-marsh facies (iron stains) and tidal-flat facies (foraminifers). This represents a novel and easy way to distinguish between these two otherwise often undistinguishable sedimentary facies in the geological record.  相似文献   

11.
The radiocarbon ages of mollusc shells from the Bogenfels Pan on the hyper arid southern coast of Namibia provide constraints on the Holocene evolution of sea level and, in particular, the mid-Holocene highstand. The Bogenfels Pan was flooded to depths of 3 m above mean sea level (amsl) to form a large subtidal lagoon from 7300 to 6500 calibrated radiocarbon years before present (cal yr BP). The mollusc assemblage of the wave sheltered lagoon includes Nassarius plicatellus, Lutraria lutraria, and the bivalves Solen capensis and Gastrana matadoa, both of which no longer live along the wave-dominated southern Namibian coast. The radiocarbon ages of mollusc shell from a gravely beach deposit exposed in a diamond exploration trench indicate that sea level fell to near or 1 m below its present-day position between 6500 and 4900 cal yr BP. The rapid emergence of the pan between 6500 and 4900 cal yr BP exceeds that predicted by glacio-isostatic models and may indicate a 3-m eustatic lowering of sea level. The beach deposits at Bogenfels indicate that sea level rose to 1 m amsl between 4800 and 4600 cal yr BP and then fell briefly between 4600 and 4200 cal yr BP before returning to 1 m amsl. Since 4200 cal yr BP sea level has remained within one meter of the present-day level and the beach at Bogenfels has prograded seaward from the delayed arrival of sand by longshore drift from the Orange River. A 6200 cal yr BP coastal midden and a 600 cal yr BP midden 1.7 km from the coast indicate sporadic human utilization of the area. The results of this study are consistent with previous studies and help to refine the Holocene sea-level record for southern Africa.  相似文献   

12.
Previously published radiocarbon-dated horizons relating to early and middle Holocene relative sea-level change along the eastern coast of mainland Scotland are examined and trends determined. The data are modified to ensure comparability and are compared against the pattern of glacio-isostatic uplift in the area. Results show that the rate of relative sea-level rise during the Main Postglacial Transgression in the middle Holocene becomes greater towards the edge of the uplifted area, whilst the age of the Main Postglacial Shoreline becomes younger in the same direction. Linear and quadratic regression analyses disclose trends which indicate that at the 0 m HWMOST isobase of the Main Postglacial Shoreline the rate of relative sea level rise between c. 8400 and c . 7000 14 C years BP ( c . 9500 to c . 7900 cal. BP) was 5-11 mm/radiocarbon year or 6-11 mm/calibrated year, whilst at the same isobase the Main Postglacial Shoreline was reached between 5500 and 6100 14 C years BP (between 6300 and 7000 cal. BP). The relative sea-level changes identified are compatible with a rising sea surface level offshore, which may have involved three episodes, possibly related to regional and wider deglaciation.  相似文献   

13.
The outer coast of Finnmark in northern Norway is where the former Fennoscandian and Barents Sea ice sheets coalesced. This key area for isostatic modelling and deglaciation history of the ice sheets has abundant raised shorelines, but only a few existing radiocarbon dates constrain their chronology. Here we present three Holocene sea level curves based on radiocarbon dated deposits from isolation basins at the outermost coast of Finnmark; located at the islands Sørøya and Rolvsøya and at the Nordkinn peninsula. We analysed animal and plant remains in the basin deposits to identify the transitions between marine and lacustrine sediments. Terrestrial plant fragments from these transitions were then radiocarbon dated. Radiocarbon dated mollusk shells and marine macroalgae from the lowermost deposits in several basins suggest that the first land at the outer coast became ice free around 14,600 cal yr BP. We find that the gradients of the shorelines are much lower than elsewhere along the Norwegian coast because of substantial uplift of the Barents Sea. Also, the anomalously high elevation of the marine limit in the region can be attributed to uplift of the adjacent seafloor. After the Younger Dryas the coast emerged 1.6–1.0 cm per year until about 9500–9000 cal yr BP. Between 9000 and 7000 cal yr BP relative sea level rose 2–4 m and several of the studied lakes became submerged. At the outermost locality Rolvsøya, relative sea level was stable at the transgression highstand for more than 3000 years, between ca 8000 and 5000 cal yr BP. Deposits in five of the studied lakes were disturbed by the Storegga tsunami ca 8200–8100 cal yr BP.  相似文献   

14.
战庆  王张华 《古地理学报》2014,16(4):548-556
根据对长江三角洲北部海安地区4个钻孔标志性沉积物(潮上带盐沼泥炭、高潮滩沉积)的年龄测定和高程测量,以及沉积物压实沉降量的分析研究,重建了本研究区全新世中期8.1~7.3 cal kyr BP和5.6~5.4 cal kyr BP的相对海平面位置。结果显示,8.1~7.3 cal kyr BP海平面缓慢上升1.46m,上升速率仅为0.2cm/yr, 与三角洲南部全新世早期海平面的快速上升(2cm/yr)形成鲜明对比,验证了冰盖控制下的全球海平面阶段性波动上升模式。对比长江三角洲地区海平面曲线发现,三角洲北部海平面曲线较南部低5~6m,长江三角洲海平面曲线与世界各地海平面曲线也存在明显差异,分析认为主要是由长江口地区的差异性沉降和中国东部边缘海的水均衡作用两个因素引起的。  相似文献   

15.
We reconstruct the Holocene shore displacement of the Västervik-Gamlebyviken area on the southeast coast of Sweden, characterised by a maritime cultural landscape and archaeological significance since the Mesolithic. Sediment cores were retrieved from four lake basins that have been raised above sea level due to the postglacial land uplift and eustatic sea level changes after the melting of the Fennoscandian Ice Sheet. The cores were radiocarbon dated and analysed for loss on ignition and diatoms. The isolation thresholds of the basins were determined using LiDAR data. The results provide evidence for the initiation of the first Littorina Sea transgression in this area at 8.5 thousand calibrated years before present (cal. ka BP). A relative sea level rise by ∼7 m a.s.l. is recorded between 8.0 and 7.5 cal. ka BP with a highstand at ∼22 m a.s.l. between 7.5 and 6.2 cal. ka BP. These phases coincide with the second and third Littorina Sea transgressions, respectively, in the Blekinge area, southern Sweden and are consistent with the final deglaciation of North America. After 6.2 cal. ka BP, the relative sea level dropped below 22 m a.s.l., and remained at ∼20 m a.s.l. until 4.6 cal. ka BP coinciding with the fourth Littorina Sea transgression in Blekinge. From 4.6 to 4.2 cal. ka BP, the shore displacement shows a regression rate of 10 mm a−1 followed by a slowdown with a mean value of 4.6 mm a−1 until 1.6 cal. ka BP, when the relative sea level dropped below 3.3 m a.s.l. The Middle to Late Holocene highstand and other periods of minor sea level transgressions and/or higher salinity between 6.2 and 1.7 cal. ka BP are attributed to a combination of warmer climate and higher inflow of saline waters in the southern Baltic Sea due to stronger westerlies, caused by variations in the North Atlantic atmospheric patterns.  相似文献   

16.
A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.  相似文献   

17.
Shallow seismic profiling indicated the presence of a drowned lagoon-barrier system formed during the transgression of the southern Kattegat, and investigations of core material have confirmed this. Studies of plant and animal macrofossils show that the lagoonal sediments contain a mixture of marine, brackish, lacustrine, telmatic and terrestrial taxa, and analyses of foraminifers indicate brackish-water conditions. Low oxygen isotope values obtained on shells of marine molluscs also point to lowered salinity. The lagoonal sediments are situated at depths between 24 and 35 m below present sea level. They are dated to between c. 10.5 cal. ka BP and c. 9.5 cal. ka BP, and reflect a period characterized by a moderate relative sea level rise. The lagoonal sediments are underlain by lateglacial glaciomarine clay and silt, which are separated from the Holocene deposits by an unconformity. The earliest Holocene sediments consist of littoral sand with gravel, stones and shells; these sediments were formed during the transgression of the area before the barrier island-lagoon system was developed. The lagoonal sediments are overlain by mud, which contains animal remains that indicate increasing water depths.  相似文献   

18.
Holocene relative sea level (RSL) changes have been investigated by analysing and dating isolation sequences from five lakes near Sisimiut in south‐western Greenland. The transitions between marine and lacustrine sediments were determined from elemental analyses and analyses of macroscopic plant and animal remains. Radiocarbon dating was used to provide minimum ages for the transitions and to construct a RSL curve. Dating of a shell of the marine bivalve Macoma balthica indicates that deglaciation of the lowlands occurred in the early Holocene, at around 10 900 cal a BP. The RSL curve shows initial rapid regression from the marine limit at around 140 m, implying strong glacio‐isostatic rebound. We suggest that the margin of the Greenland Ice Sheet was located at the shelf break during the Last Glacial Maximum. Frequent remains of the ostracode Sarcypridopsis aculeata, which is a thermophilous brackish water species that is unknown from the extant fauna of Greenland, in one of the basins around 8500 cal a BP may mark the beginning of the Holocene thermal maximum in the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The interplay of eustatic and isostatic factors causes complex relative sea‐level (RSL) histories, particularly in paraglacial settings. In this context the past record of RSL is important in understanding ice‐sheet history, earth rheology and resulting glacio‐isostatic adjustment. Field data to develop sea‐level reconstructions are often limited to shallow depths and uncertainty exists as to the veracity of modelled sea‐level curves. We use seismic stratigraphy, 39 vibrocores and 26 radiocarbon dates to investigate the deglacial history of Belfast Lough, Northern Ireland, and reconstruct past RSL. A typical sequence of till, glacimarine and Holocene sediments is preserved. Two sea‐level lowstands (both max. ?40 m) are recorded at c. 13.5 and 11.5k cal a bp . Each is followed by a rapid transgression and subsequent periods of RSL stability. The first transgression coincides temporally with a late stage of Meltwater Pulse 1a and the RSL stability occurred between c. 13.0 and c. 12.2k cal a bp (Younger Dryas). The second still/slowstand occurred between c. 10.3 and c. 11.5k cal a bp . Our data provide constraints on the direction and timing of RSL change during deglaciation. Application of the Depth of Closure concept adds an error term to sea‐level reconstructions based on seismic stratigraphic reconstructions.  相似文献   

20.
The Sisimiut area was deglaciated in the early Holocene, c. 11 cal. ka BP. At that time the lowlands were inundated by the sea, but the isostatic rebound surpassed the global sea‐level rise, and the lowlands emerged from the sea. The pioneer vegetation in the area consisted of mosses and herbaceous plants. The oldest remains of woody plants (Empetrum nigrum) are dated to c. 10.3 cal. ka BP, and remains of Salix herbacea and Harrimanella hypnoides are found in slightly younger sediments. The maximum occurrence of statoblasts of the bryozoan Plumatella repens from c. 10 to 4.5 cal. ka BP probably reflects the Holocene thermal maximum, which is also indicated in geochemical proxies of the lake sediments. A maximum in organic matter accumulation in one of the three studied lakes c. 3 cal. ka BP can probably be ascribed to a late Holocene short‐duration temperature maximum or a period of increased aridity. Cenococcum geophilum sclerotia are common in the late Holocene, implying increased soil erosion during the Neoglaciation. A comparison with sediment and macrofossil records from inland shows similar Holocene trends and a similar immigration history. It also reveals that there has been a significant gradient throughout the Holocene, from an oceanic and stable climate at the outer coast to a more continental and unstable climate with warmer summers and drier conditions close to the margin of the Greenland ice sheet, where the buffer capacity of the sea is lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号