首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
铀系方法是用自然界中较短半衰期核素测定地质年龄的一种方法,原理上可以测到百万年以内,实际上最适应定年范围是40万年以内。它在新地质年代学中部分地填补了~(14)C和K-Ar法定年范围之间的空白。铀系年代学从三十年代中期应用过剩~(226)Ra测定喀拉海铁锰结核的生长速度到现在已有  相似文献   

2.
Shiff  SL 王丽荣 《世界地质》1992,11(2):100-107
溶解有机碳(DOC)对酸感淡水系统的酸基化学,复合,流动,持久性金属中毒及其它污染物质很重要,同时对湖水碳的新陈代谢也很重要。碳同位素(~(13)C和~(14)C)在中部安大略被用来研究软水集水的发源,输送及DOC的清除。降水、土壤过滤,地下水,小溪,水獭池以及湖水和沉积水均具有化学性和同位素性。除总DOC外,已对腐殖和水溶性腐植馏分进行了同位素测量.湖是DOC的净渗坑。△~(14)C结果显示大部分DOC在小溪,湖泊和湿地中的周转时间很快,但少于40年;与酸贮存时间规模一样,地下水中DOC含旧碳量比地上水多,这表明了上土区或蓄水层DOC的深循环。  相似文献   

3.
植硅体(phytolith)是植物体细胞中非晶体二氧化硅脱水后的产物。非晶体二氧化硅的一个聚合基有活性,能够结合植物细胞中的有机碳。植物体死亡后,非晶体二氧化硅脱水,形成坚硬的硅质物,具有抗风化、抗腐蚀、耐酸的特点。植物原生的有机碳被封闭在植硅体内,与外界隔绝,被很好地保存了下来。利用植硅体进行~(14)C年代测定,可以得到植物体死亡的年龄。本研究采集浙江田螺山新石器时代遗址水稻田土壤样本,提取其中的植硅体,通过元素分析、红外光谱进行鉴定,并利用加速器质谱对植硅体样品进行~(14)C年代测定,以期得到水稻田的使用年代;对同层位炭化植物种子也利用加速器质谱进行了~(14)C年代测定。对比结果显示,植硅体年代数据与炭化植物种子的年代在3σ误差范围内一致,植硅体年代数据的中值比炭化植物种子的年代数据中值略有偏老。可以认为植硅体的年代基本上代表了水稻田被使用的年代,植硅体测年可以作为植物年代测定的有效手段。同时,本文尝试针对本研究植硅体年代数据偏老的部分原因做了一点讨论。  相似文献   

4.
放射性~(14)C年代法在冰川冻土研究中的应用   总被引:1,自引:0,他引:1  
放射性~(14)C的天然存在是由W.F.利贝发现的,1948年正式用于年代测定。此后~(14)C年代法发展很快。由于它能用来测定五六万年以来含碳样品的年龄,而这正是第四纪晚更新世和全新世时期,因此能在地球化学、第四纪地质学、古地理、古气候、考古学以及冰川冻土研究等方面得到应用。早在五十年代国外就对冰川冰进行了~(14)C年代测定。对冰川沉积物的测定更为普遍。近几年来对冰雪和地下水的测定技术也有了发展。冻土研究中测定冻土~(14)C年龄同样也是可行的。在第八、九、十、十一次国际碳十四会议上,冰的~(14)C年龄测定技术及应用方面的论文占有相当比重。我所近几年来已经用~(14)C年代法为冰期划分及冻土年代等方面研究提供了一些数据。  相似文献   

5.
土壤碳动力学同位素示踪研究进展   总被引:1,自引:1,他引:0  
土壤是陆地生态系统中最大的碳库。土壤碳动力学旨在研究土壤有机碳库的大小及更新速率。土壤有机碳库可分为 3个亚碳库:"活动"、"缓慢"和"稳定"碳库。碳同位素特别是 14 C可作为研究土壤碳动力学的理想示踪剂;δ 13 C值是定量研究C3和C4植被更替历史的有效手段; 14 C示踪及年代测定与 13 C信号联合使用,可以估算土壤碳库的大小和驻留时间。碳同位素示踪应用于土壤碳动力学研究取得了较大进展,但是由于缺乏可靠的全球数据库和标准方法来量化土壤有机碳库,导致对土壤各亚碳库的大小和更新速率以及土壤CO2的估算仍存在较大的不确定性,从而难以估计土壤碳库大小的变化对大气CO 2浓度和全球气候变化的潜在贡献。  相似文献   

6.
加速器质谱(AMS)是进行~(14)C同位素分析的主要技术手段,而高精度低本底加速器质谱~(14)C分析主要受样品制备技术限制,因此探讨如何提高石墨制备的稳定性和控制碳污染降低本底将有助于产出高质量~(14)C分析数据,突破~(14)C测年上限(约5.0万年),进一步拓宽~(14)C年代学和同位素示踪的应用范畴。本文详细阐述了催化还原法(H_2/Fe法、Zn/Fe法和Zn-TiH_2/Fe法)制备石墨样品的真空装置和主要工作原理,指出了微量样品石墨制备过程中同位素分馏、石墨产率、束流强度以及精密度与样品量之间存在严重的依赖关系及其抑制方法。着重探讨了石墨制备技术实验条件(还原剂、催化剂、温度等)的优化选择及其与石墨产率、同位素分馏、束流性能之间的内在联系,总结分析了碳污染来源并探寻合适的碳污染控制技术。目前的研究表明最佳实验条件为:H_2/Fe法宜采用还原剂H_2/CO_2(体积比2~2.5),催化剂为源自氢还原单质铁粉(-325目球粒,Fe/C=2~5),温度500~550℃;Zn/Fe法宜采用还原剂Zn/C(质量比50~80),催化剂为源自氢还原单质铁粉(-325目球粒,Fe/C=2~5),Zn反应管温度400~450℃,Fe反应管温度500~550℃。碳污染来源于制备过程中的各个方面,除采用高温除碳的方式外还可采用适当的数学模型加以校正,但还需要更多详细的实验工作来加强现有认识,以期更好地消除碳污染对测试结果的影响。对测年目标组分不稳定的样品(如地下水中的溶解无机碳)应避免样品直接暴露于大气,以减少野外采样过程中现代大气CO_2对测量结果的影响。  相似文献   

7.
李栋  赵敏  刘再华  陈波 《地学前缘》2022,29(3):155-166
河流输送到海洋的溶解无机碳(DIC)和有机碳(OC)受自然和人为双重因素的影响。了解DIC和OC的年龄、来源和转化,有助于掌握全球碳收支和提高现在以及未来自然和人类对河流碳循环影响的估算精度。本研究以普定岩溶水-碳循环试验场泉(地下水)-池(地表水)耦联系统为研究对象,利用双碳同位素(13C- 14C)方法,结合水生植物生长和传统水文地球化学特征,揭示了地下水-地表水系统中DIC和颗粒有机碳(POC)的来源及其转化机制。研究发现:(1)泉-池系统中DIC和POC的Δ14C具有相同的变化趋势,泉水中Δ14C值低于池水中Δ14C值,反映后者可能有“较年轻”的CO2的加入;(2)池水水化学和碳同位素变化由土地利用类型和池中水生植物共同控制;(3)池水中颗粒有机碳(POC)浓度明显高于泉水,且其Δ14C值表现出与沉水植物和DIC的一致性(表观年龄均为3 200900 a),说明池水POC主要源于池中水生植物光合作用利用了碳酸盐风化产生的老碳(DIC),使新形成的有机质在表观年龄上“偏老”;(4)池水水体内源有机碳对水体POC的贡献在75%以上,内源有机碳通量(以C计)在250 t·km-2·a-1至660 t·km-2·a-1之间,相对于其他土地利用类型,草地对应的地表水系统具有最大的内源有机碳占比和通量,指示了沉水植物控制型浅水水体初级生产对有机碳循环的重要作用。综上,我们认为在岩溶区通过土地利用调整来调控水生植物群落对于增加碳汇具有重要潜力。  相似文献   

8.
“死碳”对14C年代测定影响的初步研究   总被引:3,自引:1,他引:2  
王华  张会领  覃嘉铭 《中国岩溶》2004,23(4):299-303
在回顾14 C测年技术发展的基础上,指出了影响14 C测年精度的各种因素,并初步讨论了“死碳”对14 C年代的影响。通过对岩溶区“死碳”的成因分析以及对碳酸盐样品的14 C年代学研究,认为酸的来源不同,是造成岩溶区样品14 C年代偏老的原因;局部环境中“死碳”释放是造成水生样品14 C表观年龄偏老的主要原因。由于影响岩溶区样品14 C年龄的因素是多方面的,目前尚无有效的校正办法。为此,作者在讨论了洞穴碳酸盐样品年代的可靠性及影响因素的基础上,提出了用交叉对比定年的方法解决“死碳”对14 C测年的影响问题和在岩溶地区谨慎使用14 C年龄的建议。   相似文献   

9.
李科  张琳  刘福亮  贾艳琨 《岩矿测试》2020,39(5):753-761
实验室和研究人员所使用的碳、氮同位素标准物质一般由国际原子能机构(IAEA)获得,然而近年来,随着碳氮同位素在实验室质量监控、方法评价、仪器校准等方面的广泛应用,市场需求量不断增加, IAEA研制的碳、氮同位素标准物质的种类与数量逐渐不能满足科学研究快速发展的需求。我国急需研制适应当今分析技术水平的有机质碳氮同位素国家标准物质用以进行质量监控、方法评价、仪器校准。为保证量值传递精度,本文研制了4个有机化学物质的碳氮稳定同位素标准物质,其中3个为尿素样品,1个为L-谷氨酸。经检验4种标准物质的均匀性通过F值检验,标准物质的δ~(13)C和δ~(15)N值经过一年的稳定性检验,特征量值变化在测量方法允许的不确定度范围内,由此判定δ~(13)C和δ~(15)N值稳定性良好。由包括研制单位实验室在内的12家实验室协同定值,采用高温燃烧-气体同位素质谱法测定了δ~(13)C和δ~(15)N值,系列标准物质δ~(13)C和δ~(15)N认定值区间呈梯度分布,δ~(13)C值为-40‰~0‰,δ~(15)N值为-10‰~30‰,涵盖了我国天然样品中有机质碳氮稳定同位素组成范围;研制的系列标准物质δ~(13)C的定值扩展不确定度不大于0.08‰,δ~(15)N的定值扩展不确定度不大于0.09‰,定值水平与国际标准物质相当。该系列标准物质已被国家质检总局批准为国家一级标准物质,批准号为GBW04494~GBW04497。可被用于地质、生态、环境等多种样品δ~(13)C和δ~(15)N比值测定时的分析监控、仪器校准、方法评价、质量保证和质量监控。  相似文献   

10.
基于一个水文年度的月周期性采样分析,用河流悬浮颗粒物的有机碳(POC)和溶解无机碳(DIC)的同位素信号探讨了桂江径流中碳的生物地球化学循环.桂江悬浮颗粒物中POC含量多介于1.70%~14.27%之间,平均为(4.54±2.94)%;河流POC的Δ14C值介于-235.8‰~ -26.7%之间,平均为(-135.38±57.27)‰,没有检出“核爆14C”信号,揭示了较为强烈的流域地表扰动和土壤侵蚀状况.桂江POC的稳定同位素组成(δ13C)变化于-29.92% - -24.71‰之间,平均为(-26.86± 1.29)‰,这与以C3植物为主的流域生态系统的碳同位素组成一致.桂江颗粒有机质的C/N比多介于5.54 11.53之间,平均为7.97,低于全球河流的平均状况.一方面,土壤有机碳、岩石来源的地质碳及藻类生物量的混合比例决定了桂江河流颗粒有机质的C/N比和Δ14C值;另一方面,微生物群落对水体有机质的代谢分解作用也在一定程度上改变了有机质的元素和同位素比值.桂江河流DIC的δ13C值变化于-17.22‰~-10.65‰之间,平均为(- 12.95±1.94)‰.冬半年河流DIC(δ13C值平均为-11.47‰)几乎全部来自碳酸盐矿物的化学风化,夏半年土壤硅酸盐矿物的化学风化对DIC(δ13C值平均为- 14.73%)的贡献达28%.  相似文献   

11.
碳氧比能谱测井解释油气水层的方法基础及油田应用实例   总被引:1,自引:0,他引:1  
谭廷栋 《物探与化探》1990,14(5):346-356
碳氧比能谱测井是一种探测地层化学指示元素比值的核测井方法。根据测量的碳氧比(C/O)和硅钙比(Si/Ca),可以确定套管井地层含水饱和度及其产水率。从80年代起,我国大庆、胜利、辽河、大港油田先后开展了碳氧比能谱测井,在套管井地层中找油找气,获得了显著的地质效果。本文论述碳氧比能谱测井解释油气水层的方法基础及油田应用实例。  相似文献   

12.
湖北清江石笋的碳氧同位素组成及其古气候意义   总被引:10,自引:1,他引:10  
测定经铀系法和1 4 C法精确定年的石笋 (Z 2 )的碳氧同位素组成 ,探讨它们对古气候的指示意义。研究结果表明 ,研究区石笋碳酸盐氧同位素主要组成反映了地表水的氧同位素组成 ,受气候的两要素———气温和湿度控制 ;碳同位素组成则反映当地的植被面貌 ,即C3和C4植物的比例 ,间接指示古湿度。洞穴石笋稳定同位素的定量解译尚需进一步研究。  相似文献   

13.
通过密封金管-高压釜体系对珠江口盆地番禺低隆起-白云凹陷北坡恩平组炭质泥岩的干酪根(PY),在24.1 MPa压力、20℃/hr(373.5~526℃)和2℃/h(343~489.2℃)两个升温速率条件下进行热模拟生烃实验,分析气态烃(C1 5)和液态烃(C6 14和C14+)的产率,以及沥青质和残余有机质碳同位素组成。同时与Green River页岩(GR)和Woodford泥岩(WF)的干酪根,分别代表典型的I型和II型干酪根进行对比研究。结果显示PY热演化产物中总油气量明显低于GR和WF干酪根,且气态烃(C1 5)最高产率是液态烃的1.5倍,揭示恩平组炭质泥岩主要以形成气态烃为主。在热演化过程中,有机质成熟度和母质类型是控制油气比的主要因素,气态烃和轻烃的产率比值主要受热演化成熟度的影响。干酪根残余有机质碳同位素和沥青质碳同位素在热演化过程中受有机质成熟度的影响较小,δ13C残余和δ13C沥青质可以间接反映原始母质的特征,为高演化烃源岩油气生成提供依据。  相似文献   

14.
房山花岗岩岩体氧氢碳的同位素研究   总被引:1,自引:0,他引:1  
测定了房山花岗岩侵入体的岩石、共生矿物和气液包体的氧、氢、碳的同位素组成。共生石英-黑云母和石英-全岩的δ~(18)O数据表明,房山花岗岩侵入体保存了氧同位素平衡,氧同位素温度在450—580℃之间。大多数共生黑云母-角闪石δD值的相关性基本上符合Suzuoki-Epstein关系式,可以认为房山侵入体也保存了氢同位素平衡,推算得到的岩浆流体的δD值在-70—-30之间。气液包体中CO_2的δ(13)C为-4—-8,属于一种深源碳,可以利用地下水参加岩浆后期演化的假定来解释黑云母二长闪长岩氢、碳同位素异常  相似文献   

15.
用连续流同位素质谱对水样中溶解无机碳含量和碳同位素组成的测量方法进行了研究,使用德国Finnigan公司DeltaPlusXP同位素质谱仪和GasBenchⅡ在线制样装置对实验室制备的四个实验室标准进行了反应流程、平衡时间、信号强度、数据精度、标准稳定性等检测,结果显示平衡时间大于4h检测信号达到稳定,同时发现44CO2信号强度和水样中溶解无机碳(DIC)浓度具有很好的相关性,因此可以利用信号强度来计算原样品中的DIC浓度。在四个实验室标准中,由NaHCO3配置的标准具有非常好的稳定性和精度,可以作为测试的工作标准。本方法测量水样中溶解无机碳的δ13C分析精度为0.1‰。本方法可以广泛应用于自然界各种水体中溶解无机碳(DIC)含量及其稳定碳同位素组成的分析。  相似文献   

16.
黄土剖面古土壤和生物化石14C测年对比   总被引:5,自引:0,他引:5  
精确、可靠测定古土壤和生物化石年代是重建环境变化过程、探讨人地关系的关键.研究古土壤中不同组分年代的异同对于分析土壤中碳附存状态和碳储存库十分重要.对甘肃省榆中县境内兴隆山典型黄土剖面采集的动物化石、土壤无机质、土壤有机质3个样品进行常规14C和AMS测年,发现同一地层相同点样品不同组分的测年结果相差悬殊,样品无机质比其有机质年龄(3 682±70)a偏老2 624 a.对其14C测年可靠性对比分析发现,常规14C和AMS对骨骼和牙齿化石测年相差仅为13 a,校正为日历年后几乎相等,认为实验室产生的误差很小,而碳的来源、组成及其"死碳"混入的比例是影响测年结果的主要因素.化石年龄与土壤有机质年龄之间的差别,揭示该剖面可能存在持续时间达千年以上的沉积间断.由于同一层位骨化石、土壤有机质、土壤无机质14C测年结果差异,在进行化石年代确定、考古及古文明研究、生态植被恢复、土壤无机碳存储库研究中,年龄的界定应选择相应的测年数据.  相似文献   

17.
采用Gas Bench II-IRMS 对水中溶解无机碳碳同位素在线测定影响因素进行研究,确立了分析方法。通过对影响因素的研究确定了水中溶解无机碳碳同位素测试的最佳平衡时间;样品水中溶解无机碳浓度与样品测试的信号强度呈明显正相关;测试过程中色谱柱温度的高低不仅会影响样品峰的出峰时间,还会影响样品峰宽、峰高及峰积分面积等,影响最终测试结果。为了确保水中溶解无机碳碳同位素测试方法的准确性与可行性,进行了方法试验验证,水中溶解无机碳碳同位素比值(δ13C)的测定值与验证单位给出的δ13C测定值相一致,此测试方法具有可行性。在线测试的高效率和小样量与传统方法比较有显著优势,这为拓展同位素分析技术的应用领域提供了一种快速、高效的手段。本测试分析方法适用于地下水、地表水、大气降水的溶解无机碳碳同位素组成的在线测定。   相似文献   

18.
概述了国内外14C和13C技术在大气碳质气溶胶源解析中应用的研究进展,指出14C在碳质气溶胶源解析研究中具有不可替代的独特优势,联合采用14C和13C技术有利于解决多种排放源的区分问题;随着碳质气溶胶组分分离技术的进步,对有机碳(0C)和黑碳(BC)等组分中14C的研究获得重要进展;除需深入研究13C的分馏机制外,建立各种排放源在不同区域的δ13C值域“特征谱”的重要性也日益突出;结合14C和13C以外的其他示踪剂、模型和分析方法将提供更多关于气溶胶来源的信息,并减小来源贡献率估算的不确定性.  相似文献   

19.
冷水珊瑚古环境应用研究的首要问题是建立精确的年龄模式。目前常用的珊瑚定年技术包括U/Th,AMS~(14)C和~(210)Pb测年,其中前两种方法尤为重要。不同冷水珊瑚属种适用不同的定年方法。高镁方解石质的竹节柳珊瑚可用AMS~(14)C和~(210)Pb测试方法定年。竹节柳珊瑚具有清晰的生长纹层,厘定其年龄模式后,可以成为中—深层大洋环境演变的高分辨率记录载体。文石质石珊瑚同时适用于U/Th和AMS~(14)C测年方法,在古海洋研究中有特殊价值。由于u/Th测年可以提供样品的绝对年龄,因此进一步计算可获得中—深层大洋的碳储库年龄,这为探究轨道和千年时间尺度上大洋—大气碳交换这一重大学术问题提供了可靠资料。冷水珊瑚测年数据发现末次冰消期时,赤道大西洋和南大洋中层水的碳储库年龄在Heinrich Stadial 1事件结束前后突然大幅度减小,很可能表示深部大洋一部分无机碳转移进入了大气圈,或者代表Heinrich Stadial 1事件前后大西洋中层水分别主要受南半球和北半球潜沉水团的影响。  相似文献   

20.
燕山地区铁岭组稳定同位素组成特征及其地质意义   总被引:3,自引:3,他引:3  
测定的样品采自天津蓟县和北京门头沟青白口两地铁岭组碳酸盐,测得152对δ~(13)C和δ~(18)O数据,发现碳、氧同位素在两地铁岭组具有相同的变化趋势,并对它们的成因机制和地质意义进行了对比及探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号