首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
As a neutron star spins down, the nuclear matter is continuously converted into quark matter due to the core density increase, and then latent heat is released. We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. We have taken into account the conversion in the frame of the general theory of relativity. The released energy has been estimated as a function of changed rate of deconfinement baryon number. The numerical solutions to the cooling equation are seen to be very different from those without the heating effect. The results show that neutron stars may be heated to higher temperatures which is well matched with pulsar's data despite the onset of fast cooling in neutron stars with quark matter cores. It is also found that the heating effect has a magnetic field strength dependence. This feature could be particularly interesting for high temperatures of low-field millisecond pulsars at a later stage. The high temperature could fit the observed temperature for PSR J0437−4715.  相似文献   

2.
The conversion from neutron stars with different equation of states (EOSs) for neutron matter into strange stars with different EOSs for strange quark matter has been studied in a general relativistic numerical calculation in this paper. For hot neutron stars, their conversion may lead to great variations in their rotation periods, of which the magnitude would be greatly dependent upon the EOS for neutron matter, and of which the timescale would be greatly determined by the EOS for strange matter. This phenomenon appears as giant glitches, which might provide a probe of EOSs for both neutron matter and strange matter. But for cold neutron stars, their conversion may result in a population of gamma-ray bursts.  相似文献   

3.
4.
We perform a detailed physical analysis for a class of exact solutions for the Einstein–Maxwell equations. The linear equation of state consistent with quark stars has been incorporated in the model. The physical analysis of the exact solutions is performed by considering the charged anisotropic stars for the particular nonsingular exact model obtained by Maharaj, Sunzu and Ray. In performing such an analysis we regain masses obtained by previous researchers for isotropic and anisotropic matter. It is also indicated that other masses and radii may be generated which are in acceptable ranges consistent with observed values of stellar objects. A study of the mass-radius relation indicates the effect of the electromagnetic field and anisotropy on the mass of the relativistic star.  相似文献   

5.
Studying relativistic compact objects is important in modern astrophysics to understand several astrophysical issues. It is therefore natural to ask for an internal structure and physical properties of specific classes of compact stars from astrophysical observations. We obtain a class of new relativistic solutions with anisotropic distribution of matter for compact stars. More specifically, stellar models, described by an anisotropic fluid, establishing a relation between metric potentials and generating a specific form of mass function, are explicitly constructed within the framework of General Relativity. New solutions can be used to model compact objects, which adequately describe compact strange star candidates like SMC X-1, Her X-1 and 4U 1538-52, with observational data taken from Gangopadhyay et al. (Mon. Not. R. Astron. Soc. 431:3216, 2013). As a possible astrophysical application the obtained solutions could explain the physics of selfgravitating objects, and might be useful for strong-field regimes where data are currently inadequate.  相似文献   

6.
《New Astronomy》2007,12(3):165-168
We derive the bulk viscous damping timescale of hybrid stars, neutron stars with quark matter core. The r-mode instability windows of the stars show that the theoretical results are consistent with the rapid rotation pulsar data, which may give an indication for the existence of quark matter in the interior of neutron stars. Hybrid stars instead of neutron or strange stars may lead to submillisecond pulsars.  相似文献   

7.
As neutron stars spin-down and contract, the deconfinement phase transition can continue to occur, resulting in energy release (so-called deconfinement heating) in case of the first-order phase transition. The thermal evolution of neutron stars is investigated to combine phase transition and the related energy release self-consistently. We find that the appearance of deconfinement heating during spin-down result in not only the cooling delay but also the increase of surface temperature of stars. For stars characterized by intermediate and weak magnetic field strength, a period of increasing surface temperature could exist. Especially, a sharp jump in surface temperature can be produced as soon as quark matter appears in the core of stars with a weak magnetic field. We think that this may serve as evidence for the existence of deconfinement quark matter. The results show that deconfinement heating facilitates the emergence of such characteristic signature during the thermal evolution process of neutron stars.  相似文献   

8.
中子星可以通过重子物质和暗物质的相互作用吸积暗物质,且在一定条件下, 中子星吸积的暗物质粒子可以引发自引力塌缩形成小型黑洞, 生成的黑洞可能会进一步吞噬中子星.依据文献已有模型, 基于以上物理过程给出了在暗物质粒子不同质量下对暗物质粒子--中子的散射截面的限制.使用弱相互作用大质量粒子(Weakly Interacting Massive Particle, WIMP)模型, 并考虑暗物质粒子是玻色子的情形, 讨论了暗物质粒子有无自相互作用以及有无湮灭等条件下对限制暗物质参数的影响.既考虑了已发现的两个中子星系统来给出对暗物质参数空间的限制,也考虑了两个可能存在的年老中子星来预测未来观测可能对暗物质参数空间的限制.对于考虑玻色--爱因斯坦凝聚(Bose-Einstein Condensate, BEC)的玻色子暗物质, 在无自相互作用或有弱自相互作用, 无湮灭或有很小湮灭截面的条件下,中子星给出的间接观测对暗物质粒子-中子散射截面的限制的强度比XENON1T直接探测实验来得更强.未来, 如果在银心附近能观测到年老中子星, 其观测结果可以提升模型给出的对暗物质粒子--中子散射截面的限制, 从而帮助人们进一步理解暗物质.  相似文献   

9.
Neutron stars provide a unique laboratory with which to study cold, dense matter. The observational quantities of primary astrophysics interest are the maximum mass and the typical radius of a neutron star. These quantities are related to the relative stiffness of neutron-rich matter at supernuclear densities and the density dependence of the nuclear symmetry energy near the nuclear saturation density. The measurements of these nuclear properties via nuclear systematics and structure, heavy-ion collisions and parity-violating electron scattering from neutron-rich nuclei, are discussed. Several new observations, including mass measurements of binary pulsars and a confirmed distance determination for a nearby cooling neutron star, will be summarized. Additionally addressed will be observations of thermal emissions from cooling neutron stars in globular clusters and thermonuclear explosions from accreting stars. It will be demonstrated how this astrophysical data is shedding light on the pressure-density relation of extremely dense matter.  相似文献   

10.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

11.
From the study of the spectra of eighteen O-type stars can be argued that a large Compton redshift is present, that could be due to the scattering of the light of these stars in the surrounding envelopes of interstellar matter. The new values of radial velocities, obtained for the above-quoted stars by means of a formula which takes into account the generalized Compton effect, are inconsistent with the values given in the stellar catalogue.  相似文献   

12.
在包括双星及逃逸物质的系统总角动量守恒模型的基础上,采用星风质量吸积机制,由伴星通过逐次脉冲从主星吸积物质并与其外包层进行混合的模型出发,自洽地计算了钡星的重元素超丰,并给出理论计算结果与观测值的比较.计算结果表明,当取Bondi-Hoyle质量吸积率的五分之一作为实际吸积率时,对于轨道周期较长(P>1600天)、相距较远的钡星系统,在误差范围内,理论计算曲线与大多数样品星的重元素丰度观测值相符合;而对于HD204075和HD16458两颗钡星,将质量吸积率增大为Bondi-Hoyle质量吸积率的二分之一时,计算结果与观测值符合较好,这表明质量吸积率在Bondi-Hoyle质量吸积率的十分之一至二分之一之间.对于具有较短轨道周期(P<600天)的钡星系统,计算结果与丰度观测值偏差较大,表明钡星系统中还有其它的形成机制.  相似文献   

13.
The Infrared Space Observatory (ISO) Short-Wavelength Spectrometer (SWS) spectra of 10 Be stars are presented. It can be seen that the Be stars show a diversity in their ISO SWS01 spectral classifications by Kraemer et al., from naked stars, stars associated with dust, stars with warm dust shells, stars with cool dust shells to very red sources. In addition, the Brα/HI(14-6) line flux ratio derived for the sample stars is compared with that of P Cyg, and it is found that the line ratio of Be stars which were investigated show not only lower values as suggested by Waters et al., but also larger values. Therefore, the line ratio cannot be used to judge whether a star is a Be star or not.  相似文献   

14.
More and more observational hints of quark stars are proposed these years though pulsars are considered conventionally to be normal neutron stars. The existence of low-mass quark stars is a direct consequence of the possibility that pulsar-like stars are actually quark stars, because of the ability that quark matter can confine itself by color interaction. After a brief introduction to the study of quark stars, the various astrophysical implications of low-mass quark stars are investigated. It is addressed that some of the transient unidentified γ -ray sources are probably merging quark stars. The observability of low-mass quark stars is discussed.  相似文献   

15.
In our preceding paper we found solutions for the equations of the bimetric scalar—tensor theory of gravitation for neutron stars, in which the scalar field is constant while the metric tensor satisfies the equations of the general theory of relativity. In the present paper we find analogous solutions for different versions of the equation of state of the matter of a neutron star. Translated from Astrofizika, Vol. 41, No. 2, pp. 297–301. April-June, 1998.  相似文献   

16.
The abundances of heavy elements in EMP stars are not well explained by the simple view of an initial basic “rapid” process. In a careful and homogeneous analysis of the “First Stars” sample (eighty per cent of the stars have a metallicity [Fe/H] ≃ –3.1 ± 0.4), it has been shown that at this metallicity [Eu/Ba] is constant, and therefore the europium‐rich stars (generally called “r‐rich”) are also Ba‐rich. The very large variation of [Ba/Fe] (existence of “r‐poor” and “r‐rich” stars) induces that the early matter was not perfectly mixed. On the other hand, the distribution of the values of [Sr/Ba] vs. [Ba/Fe] appears with well defined upper and lower envelopes. No star was found with [Sr/Ba] < –0.5 and the scatter of [Sr/Ba] increases regularly when [Ba/Fe] decreases. To explain this behavior, we suggest that an early “additional” process forming mainly first peak elements would affect the initial composition of the matter. For a same quantity of accreted matter, this additional Sr production would barely affect the r‐rich matter (which already contains an important quantity of Sr) but would change significantly the composition of the r‐poor matter. The abundances found in the CEMP‐r+s stars reflect the transfer of heavy elements from a defunct AGB companion. But the abundances of the heavy elements in CEMP‐no stars present the same characteristics as the the abundances in the EMP stars. Direct stellar ages may be found from radioactive elements, the precision is limited by the precision in the measurements of abundances from faint lines in faint stars, and the uncertainty in the initial abundances of the radioactive elements. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Strange stars are compact objects similar to neutron stars composed of strange matter. This paper investigates the observational effects of the strong interaction between quarks. We believe: 1) that the conversion of a neutron star to a strange star is a large “period glitch” which is determined by the strong interaction; 2) that the strong interaction results in effective damping of oscillation of hot strange stars, which could be a new mechanism of driving supernova explosions; 3) that the strong interaction increases the difference in rotation between strange and neutron stars under high temperatures, making the minimum period for strange stars lower than that for neutron stars.  相似文献   

18.
In this paper, we present two new exact and analytic solutions of the Einstein–Maxwell field equations describing compact anisotropic charged stars satisfying the Karmarkar condition in the background of Bardeen black hole geometry. The solutions are composed of two parts: The inner region of the star is described by class I Karmarkar space-time, while exterior of the star is characterized by both the Bardeen and the Reissner–Nordstrom space-times. Physical analysis of the matter and thermodynamical variables show that the models are well-behaved. For our parametric set of values, we conclude that the Bardeen black hole metric can be used as an alternate to the exterior Reissner–Nordstrom metric.  相似文献   

19.
Models of neutron stars with a quark core are calculated on the basis of an extensive set of equations of state for superdense matter. The possible existence of a new branch of stable layered neutron stars is revealed for some realistic equations of state of neutron matter.  相似文献   

20.
In view of the recent report on the discovery of low mass halo stars for the candidates of MACHOs, a calculation has been made for the possible enhancement ofM/L ratio for populations of stars of varying mass domains taking the input data from the latest present day mass function (PDMF) of stars. It is seen that there is good scope for explaining dark matter problem where the dark matter is mostly in the form of low mass stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号