首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用超导重力仪观测数据精确测定低于1 mHz的地球自由振荡简正模式的分裂频率,是在不与任何弹性系数发生联系的情况下改善一维密度模型的有效方法.但在该频段台站局部气压变化对重力观测数据的影响成为主要干扰来源,且具有频率依赖特性,因此精细地开展气压改正成为利用超导重力数据检测低频自由振荡信号的必要手段.本文基于EEMD方法,提出了一种具有频率依赖特性的气压改正方法.该方法将重力观测和气压变化分解成处于不同频段的本征模态函数,并在相应频段上分别进行重力-气压变化的回归分析,计算得到具有频率依赖特性的气压导纳值,精细地消除气压变化对重力观测的影响,并以此对微弱低频地球自由振荡信号开展高分辨率分析.基于本文提出的气压改正方法,利用大地震后的超导重力数据检测了频率小于1.5 mHz的低频地球自由振荡及其频谱分裂现象.研究结果表明:利用该方法进行气压改正后检测得到的各简正模具有更高的信噪比,估计的本征频率误差水平明显降低,获得的基频球型振荡0S20S3以及一阶球型振荡1S2的分裂谱峰的估计精度更高,同时还检测到了部分环型振荡在重力观测中的耦合现象.对低频地球振荡的高分辨率检测结果验证了基于EEMD分解提出的气压改正方法的有效性,同时再次证明了超导重力仪观测数据在低频地球自由振荡检测中的优势.  相似文献   

2.
丁浩  申文斌 《地球物理学报》2013,56(10):3313-3323
完全剥离一阶模态nS1的三重分裂信号将有助于识别出其全部分裂谱线,进而更好地约束地球内部结构.理想情况下,球谐叠加法(SHS)与多台站实验技术(MSE)均可剥离一阶模态nS1的三重分裂信号,但部分学者持不同观点.本文基于对二者的理论分析进一步确认,在自耦合前提下,MSE方法可成功剥离nS1的三重分裂信号;而SHS方法在实际应用中无法成功剥离nS1的三重分裂信号,但可相对增强目标信号的振幅强度.此外,本文解释了MSE可剥离单线态信号的真实原因,并指出由于MSE未考虑全频段耦合影响,故仅适用于1 mHz以下的低频模态.鉴于超导重力(SG)数据在1 mHz以下比宽频地震数据具有更高的信噪比,因此,为验证本文结论并弄清MSE和SHS的实质,基于模拟数据及SG台站实测数据,本文利用MSE和SHS分别对一阶模态的合成信号及模态3S1进行了探测分析.实验结果表明,MSE可成功剥离一阶模态三重分裂信号,SHS则无法完全剥离,验证了我们的理论结论,表明前人部分结果需重新审视与评价.此外,本文基于三种不同方法并利用13个SG 台站数据给出的3S1的分裂宽度比分别为1.008, 1.000和1.001,远小于异常分裂判别临界值1.5, 因此,3S1应是正常分裂模态.  相似文献   

3.
地球重力场的精细频谱结构及其应用   总被引:12,自引:7,他引:5       下载免费PDF全文
综述了近年内在全球地球动力学合作观测和研究网络框架下开展的重力场观测、频谱结构和应用研究方面的成果. 内容涉及精密大气、海潮负荷信号检测, 重力潮汐和自由核章动参数测定, 海潮模型和重力固体潮模型有效性检验, 重力潮汐实验模型构制, 地球球型基频和低阶震型谱峰分裂现象和地球Chandler摆动等方面. 文章还介绍了综合现代大地测量技术, 全球超导重力仪的长期、连续观测在地表水循环、同震和震后形变、地球慢形变和地壳垂直运动等方面将发挥重要作用的情况.  相似文献   

4.
The importance of the reduction of atmospheric pressure effects becomes very clear when investigating seismic normal-mode spectra below 1.5 mHz. The usual simple correction method consists in subtracting a term converted from local atmospheric pressure (pressure multiplied by a frequency-independent admittance) from the gravity record in time domain. Thus, estimating an efficient admittance is the key for an improved correction. Band-pass filters derived from dyadic orthogonal wavelet transform, having narrow pass-bands with good frequency response but without Gibbs phenomenon and causing no phase lag, are very helpful to estimate an efficient admittance, which is both time and frequency-dependent. Processing of high quality superconducting gravimeter (SG) records for the great Sumatra earthquake (Mw = 9.3, Dec 26, 2004) with wavelet filters reveal the three very well resolved splitting singlets of overtone 2S1 with a single gravity record after correction with time-dependent and frequency-dependent admittances. We also observe all coupled toroidal modes below 1.5 mHz, except 0T5, 0T7 and 1T1, with good signal-to-noise ratio (SNR); moreover, toroidal modes 1T2 and 1T3 are for the first time unambiguously revealed in vertical components.  相似文献   

5.
许闯  钟波  罗志才  李琼 《地球物理学报》2014,57(10):3103-3116
准确估计低频自由振荡及谱线分裂是约束地球内部结构和改进地球模型的重要手段.本文利用四个不同台站的超导重力观测数据系统研究了日本Mw9.0大地震激发的低于1.5 mHz自由振荡及谱线分裂.研究结果表明:(1)选取适当的数据长度,超导重力观测数据可以检测出低于1.5 mHz除1S1以外的所有自由振荡;(2)除0S20S30S02S13S11S20T2外,重点探测出3S20S41S4谱线分裂的所有谱峰;(3)与PREM模型理论频率相比,0S0观测频率平均向右偏移0.354×10-3mHz,说明PREM理论模型中地幔底部参数与真实地球可能存在微小偏差;(4)3S2的谱线分裂率r为1.485267,比PREM理论谱线分裂宽度约宽50%,表明PREM中地球内核中部介质参数可能存在一定误差,需要进一步改善.另外,quasi-0T2的r为1.254206,比PREM理论谱线分裂宽度约宽25%.  相似文献   

6.
We have conducted observations with the aid of a seismo-tiltmeter station, which is based on the Ostrovsky pendulum and installed at the Geodynamic Observatory Cueva de los Verdes at Lanzarote Island since 1995. In this station the signal is separated into two frequency bands – tidal tilts (from 0 to 5 mHz) and ground oscillations in the frequency range of free Earths normal modes (from 0.2 to 5 mHz). The later band, called accelerometer channel, has additional amplification. We analyzed the background records in the frequency range of Earths free oscillations from August 2000 to September 2001, as well as, Earths normal modes after strong earthquakes. We found several distinctive persistent peaks in the spectra of background oscillations. Both amplitudes of distinguished peaks and noises have seasonal variations. We found that spectra of background oscillations are different in the frequency interval between 1.4 and 2.5 mHz for North- South and East-West components.  相似文献   

7.
Records of superconducting gravimeters (SGs) at Canberra (Australia), Esashi (Japan), Metsähovi (Finland) and Syowa Stations (Antarctica) were analyzed to search for further evidence of background free oscillations of the Earth. Spectrograms for 1-year period and averaged power spectra for seismically quiet periods were obtained for each of the stations. Anomalous features of the oscillations observed at Syowa Station, such as an apparent seasonal variation and a high intensity at frequencies between 3 and 4 mHz, were absent at the other SG stations. Among the SG stations used in this study, the background free oscillations were detected most consistently and distinctly at Canberra, where the noise level was comparable to that at the IDA quietest station, while that at Syowa Station was close to the critical limit for detecting the oscillations. The background free oscillations provide a good reference to evaluate the noise level in the milliHertz band.  相似文献   

8.
多通道相关分析用于宽频带地震仪自噪声检测   总被引:3,自引:0,他引:3       下载免费PDF全文
将多通道相关分析方法用于宽频带地震仪的自噪声检测,测量分析了Reftek 130、130 B和130 S三种地震数据采集器的自噪声检测结果以及14套Reftek 130 S连接Guralp CMG-3T地震计的自噪声一致性检测结果,同时给出了地震计的三轴正交性估计.结果表明:Reftek数据采集器设置为普通增益时在0.3 Hz以上频段自噪声高于Guralp CMG-3T地震计自噪声,设置为32倍高增益时在测量频段远低于地震计自噪声;测量的多台Guralp CMG-3T地震计自噪声结果在不同频段一致性差异较大,垂直向分量0.3 Hz以下频段可作为一致性比对参考频段,采集配置选择普通增益时0.3~2 Hz频段可作为数据采集器一致性比对参考频段;Guralp CMG-3T地震计三轴正交性误差估计平均在0.5°以内.  相似文献   

9.
吴海波  胡洪  张念 《地震》2012,32(3):15-27
本文首次采用JCZ-1型地震仪观测资料研究地球环型自由振荡, 并在2011年日本9.0级地震、 2010年智利8.8级地震和2005年印尼8.6级地震后武汉地震台JCZ-1型地震仪观测到了其激发的环型自由振荡, 从中检测了基振型0T2~0T67和一次振型 1T2~1T50等振型的本征周期, 与PREM的理论值比较, 误差比小于0.5%, 补充了PREM中未提到的几次振型的本征周期: 0T110T150T191T41T51T14, 并观测到了日本地震 0T20T60T70T8振型的多峰值现象。 研究结果表明, JCZ-1型地震仪具有良好的观测超低频长周期地球自由振荡的能力。  相似文献   

10.
利用全球超导重力仪数据检测长周期核模   总被引:5,自引:2,他引:3       下载免费PDF全文
采用全球地球动力学计划观测网中13台超导重力仪长期连续观测资料,探讨了长周期核模检测的可能性。采用相同的方法剔除了所有13个观测序列中的重力潮汐信号、仪器漂移和大气重力信号,估计了各个序列的功率谱密度及其积谱密度,估计并分析了非潮汐不同频段背景噪声。结果表明,在两个潮汐间频段(0.047~0.075cph和0.089~0.117cph)和亚潮汐频段(0.172~0.333cph),全球超导重力仪的平均噪声水平分别为0.0649,0.0350nm/s2和0.0138nm/s2,可以检测到的全球谐信号幅度极限分别为0.0416,0.0231nm/s2和0.0098nm/s2,表明全球超导重力仪观测资料基本可以识别长周期核模信号.在全球超导重力观测中,在潮汐间频段发现周期分别16.55,15.79,11.00h和10.09h的全球谐信号谱峰,可能来自于液核长周期振荡;在亚潮汐频段没有Smylie 1992年发现的Slichter模信号,但存在8个全球谐信号的谱峰,参考现有的理论模拟结果,Slichter模是这些信号可能的来源之一.  相似文献   

11.
Day-time Pc 3–4 (≃5–60 mHz) and night-time Pi 2 (≃5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.  相似文献   

12.
This paper aims to review the main scientific achievements which were obtained in the first phase (1997–2003) of the Global Geodynamics Project (GGP) consisting of a worldwide network of superconducting gravimeters (SG) of about 20 instruments. We show that the low noise levels reached by these instruments in various frequency bands allow us either to investigate new signals of very small amplitude or to better determine other signals previously seen. We first report new results in the long-period seismic band with special emphasis on the detection of the 2S1 normal mode and the splitting of the fundamental spheroidal mode 2S0 after the magnitude 8.4 Peru earthquake in 2001. We also discuss briefly the ‘hum’, which consists of a sequence of fundamental normal modes existing between 2 and 7 mHz even in the lack of any seismic excitation, and was first discovered on the Syowa (in Antarctica) instrument in 1998. We will comment on the search for the Slichter mode 1S1 of degree 1 which is associated with a translational motion of the inner core inside the liquid core. Atmospheric effects are reviewed from the local to the global scale and the improvement due to pressure loading computations on residual gravity signals is shown. An interesting study exhibiting the gravity consequence due to sudden rainfall and vertical mass motion in the atmosphere (without ground pressure change) is presented. The precision of the SGs leads to some convincing results in the tidal domain, concerning the fluid core resonance effect (free core nutation (FCN)) on diurnal tides or various loading effects (linear, non-linear) from the oceans. In particular, SGs gravity measurements are shown to be useful validating tools for ocean tides, especially if they are small and/or confined to coastal regions. The low instrumental drift of the SGs also permits to investigate non-tidal effects in time-varying gravity, especially of annual periodicity. Hydrology has also a signature which can be seen in SG measurements as shown by several recent studies. At even lower frequency, there is the Chandler motion of 435-day period which leads to observable gravity changes at the Earth's surface. We finally report on the progress done in the last years in the problem of calibrating/validating space satellite data with SG surface gravity measurements.  相似文献   

13.
BBVS-60型和CMG-3ESPC型地震计目前在国内测震数字台网中广泛使用,但两种型号地震计在性能和各类指标上均存在差异。本研究分别在山洞和地表两类不同观测环境的台站上安装BBVS-60型和CMG-3ESPC型地震计,对同点记录的数据对比分析,计算相同分量间的相干函数值。结果显示,在比测台址观测环境下,两种地震计在0.02—40 Hz (垂直分量)和0.04—40 Hz (水平分量)频段内具有良好的相关性,其中,记录数据在高频(10—40 Hz)和长周期频段(10—50 s)的相关程度受环境因素影响较大。此外,在工作频段内,两种地震计所记录数据的相关程度与输入振动的强度有很大关系。本文分析结果可为设备选型、震相分析以及地震工程研究提供参考。   相似文献   

14.
The first phase (1997–2003) of the Global Geodynamics Project (GGP) has now been completed. Data from superconducting gravimeters (SGs) within GGP have shown great capabilities in a wide spectrum of geophysical applications from the tidal studies to the long-period seismology. Here, we compare the noise levels of the different contributing stations over the whole spectrum. We use three different processing procedures to evaluate the combined instrument-plus-site noise in the long-period seismic band (200–600 s), in the sub-seismic band (1–6 h) and in the tidal bands (12–24 h). The analysis in the seismic band has demonstrated that SGs are particularly well suited for the studies of the long-period normal modes and thus are complementary to long-period seismometers. In the sub-seismic band, the power spectral densities, computed over a period of 15 continuous days for every GGP station, cross the New Low Noise Model of Peterson from T = 16 min to T = 4.6 h. SG data are therefore appropriate for studying long-period seismic and sub-seismic modes. In the tidal bands, the noise comparison is realised by a least-squares fit to tides, local air pressure and instrumental drift, leading to gravity residuals where we estimate a standard deviation and average noise levels in different tidal frequency bands. Tidal gravity observations using SGs have also shown to be an independent validation tool of ocean tidal models, and they are therefore complementary to tide gauge and altimetric data sets. Knowledge of the noise levels at each station is important in a number of studies that combine the data to determine global Earth parameters. We illustrate it with the stacking of the data in the search for the gravity variations associated with the sub-seismic translational motions of the inner core, the so-called Slichter triplet.  相似文献   

15.
The development of a new broadband seismometer should begin with preliminary theoretical study that includes, first of all, the investigation of noise which is expected to be generated by the device under the action of fluctuations of environmental factors. This noise limits a frequency band of devices from the long-period side and their dynamic range from below. Experimental determination of the noise characteristics of the existing broadband seismometers is limited by a microseism level in the places where the devices are installed. In view of this, the theoretical study of noise generating factors and channels of noise generation is of special importance. One of the main noise generating factors of the broadband seismometers is the ambient temperature variation. One of the types of temperature noise is the variation in linear dimensions of device elements perceived by a seismosensor as ground vibration. In this study, the estimates are presented which make it possible, first, to clarify which elements of the device are the most sensitive to the ambient temperature variations and, consequently, insert the most noise to seismic recording and, second, to determine the level of noise generated by all the elements. The frequency dependence of apparent motion of the Earth on structural dimensions and materials of the device is expressed in general form.  相似文献   

16.
The so-called hour-mark effect, which reflects a response of the lithosphere to anthropogenic forcing, was initially detected when processing the earthquake catalogues by the method of synchronous detection. When attempting to reveal this effect by spectral analysis, we encountered an interesting feature of global seismicity. Namely, the spectrum of seismic activity indeed contains a peak at a frequency of 0.277 mHz, and this peak has a clearly anthropogenic origin (the hour-mark effect). At the same time, the spectrum also contains a stronger peak at a frequency of 0.309 mHz, which corresponds to a period of 54 min. We have independently detected this period in the aftershock sequences in the epicentral zones of large earthquakes and in the variations of seismicity in the antipodal zones. The 54-min periodicity coincides with the fundamental mode 0 S 2 of the free oscillations of the Earth. It is suggested that oscillations of the Earth as a whole result in a weak but detectable modulation of seismic activity.  相似文献   

17.
地震方位各向异性广泛存在于地球上地幔中,目前利用地震体波或面波分析研究上地幔各向异性的地球物理方法有很多种,但是由于各自的局限性均难以分析上地幔过渡区中的各向异性特征.方位各向异性可导致球形简正模和环形简正模之间发生耦合.地球长周期自由振荡的简正模可深入到上地幔过渡区.本文利用各向异性地球模型计算各向异性简正模耦合深度敏感核,表明长周期(250~400 s)简正模各向异性耦合(如0S20-0T210S25-0T25)的敏感度峰值在400~600 km之间.在不受地球自转影响的台站,如位于南极极点的QSPA站,仍然可以观测到强烈的简正模耦合现象.本文的研究表明:只有在地震观测台站靠近长周期球形振荡的节点时,才能在其观测数据中观测到各向异性耦合现象,许多各向异性耦合在震后18~24 h期间最强,并可导致垂直方向的环形简正模的振幅大于球形耦合简正模的振幅.这些特征是在地震观测数据中寻找各向异性耦合的重要线索.长周期简正模的方位各向异性耦合为我们提供了一个新的认识上地幔过渡区各向异性的窗口.  相似文献   

18.
It is shown that long-period (T = 10?C20 h) oscillations of the magnetic field in sunspots, combined in bipolar groups, are excited synchronously in the main and tail spots of a group. At the same time, there is no correlation between long-period oscillations of the field of sunspots which are in different active regions, i.e., spaced sunspots oscillate independently. This fact eliminates the question about the apparatus nature of the oscillations of interest (if there is an artifact, oscillations of all sunspots on the visible solar hemisphere would be synchronous!). High-resolution (0.5 angular seconds per pixel) MDI(SOHO) data show a high correlation between long-period oscillations of the magnetic field at isolated points of the sunspot shadow. This points to the fact that the sunspot shadow participates in long-period oscillations as a quite integral physical formation.  相似文献   

19.
This paper examines the possibility of using superconducting gravimeter (SG) observations without a tilt compensation system. SG data obtained at Syowa Station, Antarctica, were recorded without tilt compensation from April 5, 2001 to January 4, 2002, however, tilt signals were registered during this time period. A tilt correction was applied to gravity data from August 2, 2001 to January 4, 2002. After the tilt correction, errors of tidal parameters were dramatically reduced and tidal parameters themselves almost coincide with those from the same length of tilt-controlled gravity data recorded in 2000, when tilt compensation system was used. The noise level of the thermal leveler in the seismic band was also investigated. Averaged power spectra of gravity from 15 quiet days each in 2000 and 2001 recorded with and without the tilt compensation system, respectively, were compared. ‘Quiet’ in this case, means very low earthquake activity and calm wind conditions. No significant difference in the seismic band, except at the frequency of 2 mHz, was noticed. The difference at 2 mHz occurred because of room temperature variations caused by the water cooler, which cools down a compressor by automatically switching on and off.  相似文献   

20.
以中国大陆构造环境监测网络昆明台和恩施台gPhone相对重力仪连续重力潮汐观测数据为基础,研究了gPhone重力仪在1 mHz以上频段的高频响应。从瑞利面波角度获得gPhone重力仪的高频响应,并且通过与同址观测的STS-1地震仪LHZ分量数据进行对比,验证了gPhone重力仪高频观测结果的可靠性。对比从gPhone重力仪和STS-1地震仪观测数据中提取到的面波波形和群速度频散曲线,发现昆明台两类仪器观测到面波信号的振幅和相位都较为一致,而恩施台仅振幅较为一致,相位上存在较明显差异,gPhone重力仪记录的面波信号在各频段存在不同的时间延迟。用两类仪器观测数据获得了大地震激发的自由振荡,结果表明两类仪器观测到的基频球型模态自由振荡的频率和振幅都吻合较好,进一步验证了gPhone重力仪对高频频段信号振幅响应的可靠性。以上研究结果表明:利用gPhone重力仪能够准确地观测到大地震激发的面波和自由振荡等高频信号的振幅,但在记录信号的相位信息时,有些仪器会有相位偏移产生,如果研究中需要考虑信号的相位,则必须获得仪器相位偏移量,再进行仪器相位校正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号