首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于EEMD分解的气压改正方法研究
引用本文:王迪晋,刘子维,韦进,王伟,聂兆生.基于EEMD分解的气压改正方法研究[J].地球物理学报,2018,61(2):504-520.
作者姓名:王迪晋  刘子维  韦进  王伟  聂兆生
作者单位:中国地震局地震研究所(地震大地测量重点实验室), 武汉 430071
基金项目:中国地震局地震科技星火计划(XH15028),国家自然科学基金(41304067,41404015,41504011),中国地震局地震研究所所长基金(IS201326131)和中国地震局地震行业科研专项(201508009)共同资助.
摘    要:利用超导重力仪观测数据精确测定低于1 mHz的地球自由振荡简正模式的分裂频率,是在不与任何弹性系数发生联系的情况下改善一维密度模型的有效方法.但在该频段台站局部气压变化对重力观测数据的影响成为主要干扰来源,且具有频率依赖特性,因此精细地开展气压改正成为利用超导重力数据检测低频自由振荡信号的必要手段.本文基于EEMD方法,提出了一种具有频率依赖特性的气压改正方法.该方法将重力观测和气压变化分解成处于不同频段的本征模态函数,并在相应频段上分别进行重力-气压变化的回归分析,计算得到具有频率依赖特性的气压导纳值,精细地消除气压变化对重力观测的影响,并以此对微弱低频地球自由振荡信号开展高分辨率分析.基于本文提出的气压改正方法,利用大地震后的超导重力数据检测了频率小于1.5 mHz的低频地球自由振荡及其频谱分裂现象.研究结果表明:利用该方法进行气压改正后检测得到的各简正模具有更高的信噪比,估计的本征频率误差水平明显降低,获得的基频球型振荡0S20S3以及一阶球型振荡1S2的分裂谱峰的估计精度更高,同时还检测到了部分环型振荡在重力观测中的耦合现象.对低频地球振荡的高分辨率检测结果验证了基于EEMD分解提出的气压改正方法的有效性,同时再次证明了超导重力仪观测数据在低频地球自由振荡检测中的优势.

关 键 词:超导重力仪  气压改正  EEMD  低频地球自由振荡  
收稿时间:2017-03-08

Method to correct atmospheric pressure effects based on ensemble empirical mode decomposition
WANG DiJin,LIU ZiWei,WEI Jin,WANG Wei,NIE ZhaoSheng.Method to correct atmospheric pressure effects based on ensemble empirical mode decomposition[J].Chinese Journal of Geophysics,2018,61(2):504-520.
Authors:WANG DiJin  LIU ZiWei  WEI Jin  WANG Wei  NIE ZhaoSheng
Institution:Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China
Abstract:The precise determination of the frequency splitting of seismic normal modes below 1 mHz using Superconducting Gravimeter (SG) data is an effective way to improve 1D density models without any trade-off with elastic parameters, as they are directly linked to the 1D-density profile. In the frequency band below 1 mHz, local atmospheric pressure around the SG sites becomes a major error source with the frequency-dependent characteristics. Therefore, an elaborate atmospheric-pressure correction on the SG data is necessary to detect low-frequency free oscillations of the Earth. Based on the Ensemble Empirical Mode Decomposition (EEMD), we propose an atmospheric-pressure correction method with frequency-dependent characteristics. With this method, gravity and atmospheric pressure are decomposed into a set of Intrinsic Mode Functions (IMFs) which are located in the different frequency bands respectively, then the gravity-pressure admittances are calculated in different frequency bands by applying a regressive analysis between gravity and atmospheric pressure. Finally, the influence of atmospheric pressure on the SG observation is elaborately removed. Using this method, we carried out a high-resolution analysis of low-frequency seismic normal modes and discovered their frequency splitting below 1.5 mHz by SG data after a great earthquake. The results demonstrate that seismic normal modes obtained from the atmospheric-pressure correction method proposed in this paper have higher signal-to-noise ratio, the standard deviations of estimated eigen-frequencies are distinctly reduced and the singlets of the fundamental spheroidal modes 0S2 and 0S3 and the degree one spheroidal mode 1S2 have high estimated precisons. Some spheroidal-toroidal mode couplings are also clearly detected in the SG data. The high-resolution analysis of low-frequency seismic normal modes not only has verified the atmospheric-pressure correction method based on EEMD but also has demonstrated the superiority of applying the SG data to detecting low-frequency seismic normal modes.
Keywords:Superconducting gravimeter  Atmospheric pressure  Ensemble empirical mode decomposition  Low-frequency Earth's free oscillations
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号