首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The contribution of thermal forcing to the planetary stationary waves will be studied also by assuming that heat balance in stationary waves over zonally asymmetric thermal forcing must be maintained over a long time period. Us-ing the same model of geostrophic waves introduced in Part I, we may explain successfully the observed and simulated responses to the thermal forcing in the atmosphere, such as the wave 1 structure at high levels of middle latitudes, the seasonal changes of the stationary waves in the Northern Hemisphere, the opposite phase distributions of stationary waves at high and low levels of the subtropical regions in both hemispheres and so on.  相似文献   

2.
The zonal momentum generation in forced stationary waves may exceed the requirement for momentum balance after long, if the waves do not change their patterns, This suggests that the changes in stationary wave patterns would be required by maintenance of momentum balance over the external forcings. It will be found that the low frequency anomalies like blocking regimes may produce reversed zonal momentum variations, if they happen in the observed centre areas. The zonal momentum balance in the stationary waves may be maintained effectively by alternation between the normal and blocking circulation regimes, Thus, from the point of long-term zonal momentum balance, we may explain the geographical distributions of the blocking centres and the seasonal variations in blocking areas and frequencies.  相似文献   

3.
经圈环流对定常波传播的影响   总被引:1,自引:0,他引:1  
宋燕  缪锦海 《气象学报》1994,52(4):424-432
在一般斜压大气中,基本气流中包含经圈环流时,定常波传播不仅能穿过东风带,而且明显增强。在基流含有经圈环流的情况下,北半球中纬度地形强迫可引起低纬大气的显著响应,这表明经圈环流在中低纬定常响应的相互联系中起着重要作用;北半球中纬度热力强迫可产生类似北半球夏季季风环流的波列分布,这说明经圈环流在夏季季风环流的形成中起着一定的作用;在赤道东太平洋加热强迫情况下,在冬半球可引起PNA型的定常波传播波列,而在夏半球却没有明显的PNA特征。这表明经圈环流对冬、夏半球的定常波传播路径有着显著的影响。  相似文献   

4.
The coupled climate model EC-Earth2 is used to investigate the impact of direct radiative effects of aerosols on stationary waves in the northern hemisphere wintertime circulation. The direct effect of aerosols is simulated by introducing prescribed mixing ratios of different aerosol compounds representing pre-industrial and present-day conditions, no indirect effects are included. In the EC-Earth2 results, the surface temperature response is uncorrelated with the highly asymmetric aerosol radiative forcing pattern. Instead, the anomalous extratropical temperature field bears a strong resemblance to the aerosol-induced changes in the stationary-wave pattern. It is demonstrated that the main features of the wave pattern of EC-Earth2 can be replicated by a linear, baroclinic model forced with latent heat changes corresponding to the anomalous convective precipitation generated by EC-Earth2. The tropical latent heat release is an effective means of generating stationary wave trains that propagate into the extratropics. Hence, the results of the present study indicate that aerosol-induced convective precipitation anomalies govern the extratropical wave-field changes, and that the far-field temperature response dominates over local effects of aerosol radiative forcing.  相似文献   

5.
Experiments using a quasi-geostrophic model and the ECMWF T21 spectral model with and without orography are performed to investigate the effects of mechanical forcing on the mean meridional circulation. Results show that mechanical forcing intensifies the horizontal poleward heat flux and redistributes the eddy angular momentum in the vertical, and that this changes significantly the intensity and location of the mean me-ridional circulation centres.It is shown how the mean meridional circulation is set up in such a way to satisfy both the dynamical and thermodynamical transport requirements of the model atmosphere. Whenever external forcing changes the eddy fluxes, the Coriolis torques from the upper horizontal branches of the mean meridional circulations change to balance the extra divergence of eddy momentum flux, and additional adiabatic heating is produced by the vertical branches of the toroids to balance the extra divergence of eddy heat flux. The mean meridional circula-tion is, therefore, confirmed to be very sensitive to mechanical forcing, and can be used as an efficient tool to quantitatively diagnose the adequacy of the orographic representation of numerical forecasting and general cir-culation models.  相似文献   

6.
In a general baroclinic atmosphere,when the basic state includes meridional circulation,the sta-tionary waves might not only pass through the equatorial easterlies,but also strengthen significantly.The orographic forcing in the Northern Hemisphere mid-latitude might cause marked responses in thelow latitude atmosphere.This suggests that the meridional circulation plays an important role in theconnection of stationary responses in mid and low latitudes,and so does the heating forcing in theNorthern Hemisphere mid-latitude.Forced by the heating forcing in the Northern Hemisphere mid-latitude,the features similar to the Northern Hemisphere summer monsoon circulation can be ob-tained.It appears that the meridional circulation plays certain role in the formation of summer mon-soon circulation.The heating anomaly forcing located at the eastern equatorial Pacific makes the sta-tionary waves present PNA(Pacific-North America)pattern in the winter hemisphere,but it doesnot in the summer hemisphere.It suggests that the meridional circulation has a marked influence onthe route of stationary wave propagation both in the winter and summer hemispheres.  相似文献   

7.
A nonlinear steady-state baroclinic primitive-equation numerical model of atmospheric forced stationarywaves is used to investigate the tropics-extratropics interactions.Newtonian cooling,Rayleigh friction andbiharmonic horizontal diffusion are included in the model.The Eliassen-Palm (EP) cross-section and three-dimensional wave activity flux,which was derived by Plumb (1985) for linear quasi-geostrophic stationarywaves on a zonal flow,are used as diagnostics for the vertical and horizontal propagation of the waves.Results of the numerical experiments and diagnostics analyses suggest that the extratropical influenceon the tropical large-scale motion is important.The mid-latitude orographic forcing,especially of the Qing-hai-Xizang Plateau,and the extratropical thermal forcing make substantial contribution to the main-tenance of the cyclonic circulation over the eastern tropical and subtropical Pacific as well as the inversecirculation over the western Pacific in the upper troposphere.In addition,the longitudinal variation ofdiabatic heating in tropics has a significant influence on the wintertime stationary waves at higher latitudes.  相似文献   

8.
While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model??s mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves and suggest a weak influence of prescribed observed SST in the northern extratropics. Results therefore indicate that improving the tropical divergent circulation and its response to tropical SST anomalies remains a key issue for increasing the skill of extratropical seasonal predictions, not only in the winter hemisphere but also in the boreal summer hemisphere where the prediction of heatwave and drought likelihood is expected to become an important challenge with increasing concentrations of greenhouse gases.  相似文献   

9.
黄荣辉 《气象学报》1984,42(1):1-10
本文应用一个包括Rayleigh摩擦、牛顿冷却、水平涡旋热量扩散、定常、准地转、34层球坐标模式来研究冬季北半球地形与定常热源强迫所产生的定常行星波。 本文计算了强迫所产生的定常行星波引起的动量通量与热量通量。计算结果与观测结果比较一致。 计算结果表明:最大向北的动量通量与热量通量位于平流层。  相似文献   

10.
Summary The role of stationary (monthly mean) and transient (departure from monthly mean) waves within the atmospheric energy cycle is examined using global analyses from the European Centre for Medium Range Weather Forecasts (ECMWF) for the period 1980–1987. Only January and July averages are considered.It is confirmed that planetary stationary waves are basically baroclinic. Their contribution to the globally averaged energy cycle of the atmosphere is comparable to that of the transient waves. In January they contribute about 40% to the baroclinic conversion (CA) from zonal mean to eddy available potential energy. Local values for the northern hemisphere even show a predominant role of the stationary wave conversions over those originating from transient waves. Part of the available potential energy of stationary waves (A SE) is converted to kinetic energy by warm air rising and cold air sinking. Nonlinear energy conversion, which can be interpreted as destruction of stationary temperature waves by transients, is the second sink forA SE. The order of magnitude of these two processes is similar.Barotropic nonlinear conversions, though negligible in the global average, reveal large conversion rates between the mean positions of the polar and the subtropical jets. Their orientation is suggestive of a tendency to increase stationary wave kinetic energyK SE at its local minimum between the jets at the expense of the synoptic scale transients.While all terms of the energy cycle related to stationary waves reveal a predominance of the planetary scale (zonal wave numbers 1–3) transient waves are governed by synoptic scale waves (zonal wave numbers 4–9) only with respect to the baroclinic and barotropic conversions: a significant amount of transient wave energy (50% for the global average ofA TE) is due to planetary scale waves.With 15 Figures  相似文献   

11.
If the initial fields are not in geostrophic balance, the adjustment and evolution will occur in the stratified fluid, and the frontogenesis will occur under suitable conditions. The evolution is studied here with a nonhydrostatic fully compressible meso-scale model (Advanced Regional Prediction System, ARPS). Four cases are designed and compared: (i) control experiment; (ii) with different initial temperature gradient; (iii) with vapor distribution; (iv) with orographic forcing. The results show that: (1) there is an inertial oscillation in the evolution of the imbalanced flow with the frequency of the local Coriolis f, and with its amplitude de-creasing with time. The stationary balanced state can only be approached as it cannot be reached in the limit duration of time, The energy conversion ratio varies in the range of [0, 1 / 3]; (2) the stronger initial tempera-ture gradient can make the final energy conversion ratio higher, and vice versa; (3) suitable vapor distribu-tion is favorable for the frontogenesis. It will bring forward the time of the frontogenesis, strengthen the in-tensity of the cold front, and influence the final energy conversion ratio; (4) the orographic forcing has an ev-idently strengthening effect on the frontogenesis. The strengthening effect on the frontogenesis and the influ-ence on the final energy conversion ratio depend on the relative location of the mountain to the cold front.  相似文献   

12.
1.InttoductionIftheinitialfieldsarenotingeostrophicbalance,theadjustmentandevolutionwilloccurinthestratifiedfluid,andthefrontogenesiswilloccurundersuitableconditions.ThisaspectwasfirstinvestigatedbyRossby(1938),followedbymanyscientists(Blumen,1972;Gill,1976,1982;VanHeijst,1985;BossandThompson,1985;On,1984,1986;McWilliams,1988;Middleton,1987;Glendening,1993;BlumenandWu,1995;WuandBlumen,1995;Grimshaw1998;Blumen,1998;etc.).Intheseresearches,theenergyconversionratioy=AEk/BE,isaninterestin…  相似文献   

13.
The momentum flux of stratospheric gravity waves generated by Typhoon Ewiniar (2006) is examined using a Weather Research and Forecasting (WRF) model. In the stratosphere, zonal momentum flux with a positive sign by eastward-propagating waves is significant during the northward moving of the typhoon, while both zonal and meridional momentum fluxes with positive signs are significant during the typhoon decaying stage in which the typhoon moves northeastward. The magnitude of the momentum flux is greater during the mature stage of the typhoon than the decaying stage, and the phase speeds of the dominant momentum flux are less than 30 m s?1 with a peak at 10–16 m s?1. Positive momentum flux decreases with height overall in the stratosphere for both zonal and meridional components. The resultant gravity-wave drag forcing plays a role to decelerate the easterly background wind in the stratosphere. This drag forcing is relatively large above z = 40 km and below z = 20 km, and lower stratospheric wave drag is expected to affect the typhoon dynamics by modifying the background wind shear and inducing the secondary circulation in the troposphere.  相似文献   

14.
本文与文献[1]相对应,利用一个非线性初始方程谱模式,研究了中、高纬度理想化的大尺度地形以及北半球实际地形的动力强迫作用对于冬季行星尺度的大气定常波的影响。计算结果证实,根据线性模式的数值试验结果所做的定性分析在非线性情形下仍然是成立的,同时,非线性扰动流场也与线性流场有明显的差异,在纬向平场基本气流相对较弱的地区或垂直层次上差异尤为显著。数值试验表明,北半球实际地形强迫的大尺度扰动,在对流层低层以及对流层上部的中、高纬均主要表现出纬向波数为2的行星波,但是在对流层上部的低纬地区3波分量比较明显。中、高纬的大地形动力强迫作用,对于低纬太平洋高空的反气旋和气旋环流的形成有重要的贡献。   相似文献   

15.
The structure of the atmospheric stationary planetary waves is obtained by means of the quasi‐geostrophic linear model developed by Matsuno (1 970). To show the influence of the upper boundary condition on the structure of the waves, the latter is computed using a rigid top and a radiation condition. The modifications to the wave structure obtained when the upper boundary is lowered from a height of 65 km to 42.5 km, 32.5 km, and 22.5 km are examined. The effects of varying the vertical grid increment are studied through a comparison of the wave structures obtained with 6, 12, and 24 levels between 5 and 65 km.  相似文献   

16.
一个双波地形重力波拖曳参数化方案   总被引:4,自引:0,他引:4  
王元  唐锦赟  伍荣生 《气象学报》2007,65(5):733-743
当地形次尺度强迫的作用与显式的经典动力作用效应相当时,地形重力波拖曳力对于环流的维持,以及动量和热量通量输送的动力效应变得十分显著。这种地形次尺度拖曳作用项可通过参数化的方法,在动力方程中加入额外的小项而引入数值模式。目前成熟的地形重力波拖曳参数化方法,如第1代基于线性单波理论的参数化方案;以及侧重考虑了临界层作用等因素对拖曳力的额外贡献的第2代参数化方案,都无法有效表达风速垂直变化引起的波动应力随高度变化的特征。基于上述考虑,本文给出了一个双波参数化方案用于计算地形重力波拖曳中由线性自由传播重力波造成的波动应力的垂直分布。通过二阶WKB近似,它对由风速垂直变化引起的对波动应力的选择性临界层吸收过程和经典的临界层吸收过程做了显式处理;而在不发生临界层吸收现象的地区,则用两个单波同时在垂直方向上进行应力的传播,并利用波饱和标准进行应力耗散。进一步地在真实地形(以大别山地区为个例)条件下的测试结果表明,通过在不同理想风速廓线以及北半球冬季中纬度纬向平均风廓线下对波动应力垂直分布的计算,证明该方案确实能有效地给出应力随高度变化的特征。  相似文献   

17.
Summary The effect of white capping on the spectral energy balance of surface waves is investigated by expressing the white-cap interactions in terms of an equivalent ensemble of random pressure pulses. It is shown first that the source function for any non-expansible interaction process which is weak-in-the-mean is quasi-linear. In the case of white capping, the damping coefficient is then shown to be proportional to the square of the frequency, provided the wave scales are large compared with the white-cap dimensions. The remaining free factor is determined indirectly from consideration of the spectral energy balance. The proposed white-capping dissipation function is consistent with the structure of the energy balance derived from JONSWAP, and the existence of a –5 spectrum governed by a non-local energy balance between the atmospheric input, the nonlinear energy transfer and dissipation. However, closure of the energy balance involves hypotheses regarding the structure of the atmospheric input function which need to be tested by further measurements. The proposed set of source functions may nevertheless be useful for numerical wave-prediction. According to the model, nearly all the momentum transferred across the air-sea interface enters the wave field. For fetchlimited and fully developed spectra in a stationary, uniform wind field, the drag coefficient remains approximately constant. However, for more general wind conditions, this will not be the case and the wave spectrum should be included in an accurate parameterisation of the air-sea momentum transfer.Contribution from the Sonderforschungsbereich Meeresforschung Hamburg of the Deutsche Forschungsgemeinschaft.  相似文献   

18.
Monthly or seasonally mean anomalies of large-scale atmospheric circulation are better represented by wave packets or their combination. Both qualitative and quantitative analyses of equations of wave packet dynamics, which are obtained by the use of WKB approximation, are very helpful for the understanding of structure, formation and propagation of stationary and quasi-stationary planetary wave packet patterns in the atmosphere. Indeed, these equations of wave packet dynamics can be directly solved by the method of characteristic lines, and the results can be simply and clearly interpreted by physical laws. In this paper, a quasi-geostrophic barotropic model is taken for simplicity, and the wave packets superimposed on several ideal profiles of the basic current and excited by some ideal forcings are investigated in order to make comparison of the accuracy of calculation with the analytical solution. It is revealed that (a) the rays of stationary planetary wave packet do not coincide with but go away from the great circle with significant difference if the shear of the basic zonal flow is not too small; (b) being superimposed on a westerly jet flow with positive shear (Uλ/y>0), the stationary wave packets excited by low-latitudinal forcing are first intensified during their northeastward propagation in the Northern Hemisphere, then reach their maximum of amplitude at some critical latitude, and after that weaken again; (c) the connected line of extremes (the positive and negative centres) of wave packet does not coincide with but crosses the ray by an angle, the larger the scale of external forcing, the larger the angle; and (d) the whole pattern of a trapped stationary wave packet is complicated by the interference between the incident and reflected waves.  相似文献   

19.
 The great continental ice sheets of the Pleistocene represented a significant topographic obstacle to the westerly winds in northern midlatitudes. This work explores how consequent changes in the atmospheric stationary wave pattern might have affected the shape and growth of the ice sheets themselves. A one dimensional (1-D) model is developed which permits an examination of the types and magnitudes of the feedbacks that might be expected. When plausible temperature perturbations are introduced at the ice-sheet margin which are proportional to the stationary wave amplitude, the equilibrium shape of the ice sheet is significantly altered, and depends on the sign of the perturbation. The proposed feedback also affects the response of the ice sheet to time-varying climate forcing. The results suggest that the evolution of a continental-scale ice sheet with a land-based margin may be significantly determined by the changes it induces in the atmospheric circulation. Received: 1 October 1999 / Accepted: 17 July 2000  相似文献   

20.
The dynamics of sea surface temperature (SST) anomalies that force stationary atmospheric waves, which in turn, feed back on the SST field is addressed. The phenomena is isolated by analyzing the dynamics of a slab ocean that is thermally coupled to an atmospheric model. Particular emphasis is put on identifying SST structures that are weakly damped by the joint effect of air–sea heat transfer and atmospheric wave dynamics.A frame work is presented that singles out long-lived SST features in a slab ocean coupled to an arbitrary linear atmospheric model. It is demonstrated that an SST anomaly eventually disintegrates into a number of propagating wave packets. The wave packets are confined in a Gaussian envelope, and each packet is tied to a stationary wave of a particular wavelength. These structures are a manifestation of coupled SST-atmosphere mode, for which the atmosphere and the ocean nearly are in thermal equilibrium. However, a small disequilibrium causes the wave packet to propagate and to broaden in an apparent diffusive manner.Central ideas pertaining to the mid-latitude SST dynamics are illustrated by analyzing the thermal feedback between a two-level atmospheric model (on a β-plane) and a dynamically passive slab ocean. The relevance of the present idealized coupled-modes to the SST variability in the mid-latitudes and in atmospheric GCMs coupled to slab oceans is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号