首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
望谟近5a短时强降水特征及其形成机理分析   总被引:1,自引:0,他引:1  
该文利用望谟县站逐小时降水量、MICAPS资料,对近5 a(2010—2014年)望谟短时强降水特征及暴雨主要影响系统进行分析,结果表明:1近5 a望谟16次暴雨天气过程中,春季暴雨及秋季暴雨的平均雨强明显小于夏季;短时强降水逐月变化呈现明显的单峰型结构,6月是短时强降水最频繁发生的月份;短时强降水日变化呈三峰型结构,夜间是强降水集中发生时间,09—20时是强降水不发生时段。2高空槽和切变线是影响望谟暴雨的主要系统;地面上的系统多为辐合线、冷锋或静止锋;冷空气的入侵一般发生在春末夏初及秋季;低空急流的建立多出现在盛夏;南支槽影响望谟暴雨的时间主要为5月。3夏季暴雨的比湿条件及水汽通量好于春末,但是水汽辐合的强度没有春末强,秋季暴雨的比湿条件及水汽通量条件更差,但是850 h Pa的水汽通量散度较好;秋季及春末暴雨发生时上升运动更为剧烈;春末和夏季大气层结最为不稳定。4对流云系主要源地位于贵州西部—云南东部富源、罗平一线,有7次对流云系的源地为六盘水,3次为毕节,3次为黔西南州内;云系的移动路径基本为东南路径或偏南路径;有6次为典型MCS,4次为分散对流云系;16次过程中有10次有其它对流云系的合并加入。  相似文献   

2.
选取2020年8月27-28日黑龙江省降雨量和风的实况观测资料以及NCEP再分析等资料,分析了2020年“巴威”台风影响黑龙江省时的风雨天气实况、环流形势和物理量场特征。结果表明:“巴威”台风登陆后迅速减弱变性,对黑龙江省的影响主要是暴雨天气,风力影响相对较小。台风减弱变性后的温带气旋以及低层850 hPa和700 hPa风向或风速辐合为产生暴雨提供了较好的动力抬升条件,台风携带水汽及低空急流的水汽输送为产生暴雨提供了充分的水汽条件,低层风场辐合区稳定少动为产生暴雨提供了充足的时间。低层850 hPa比湿、水汽通量、水汽通量散度以及中低层垂直速度等物理量要素对预报暴雨落区和发生时间有较好的指示意义。  相似文献   

3.
“西马仑”与“海贝思”台风特大暴雨对比分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料、NCEP再分析资料、卫星云图和雷达回波等资料,采用多种物理量诊断分析方法,对路径相似、在闽南地区产生特大暴雨的1308号台风"西马仑"和1407号台风"海贝思"的环流形势特征、云系结构特征及水汽、动力、热力条件进行了对比分析。结果表明:"西马仑"的过程特点是雨强大、降水时间集中,而"海贝思"的特点则是雨强小、降水时间长;"西马仑"云系结构紧密,属中尺度对流云团降水,而"海贝思"云系结构松散,其外围的螺旋云带产生的列车效应是产生特大暴雨的重要原因;两个台风都具有低空急流、风速辐合、低层辐合高层辐散流场等有利于产生特大暴雨的环流形势特征;两个台风都存在低空偏东风和偏南风急流,两支急流为暴雨区提供了充足的水汽条件,低空急流较强的时段与强降水时段相对应;台风中心附近强辐合辐散区的建立和维持是产生特大暴雨重要的动力条件,水汽辐合区的面积和强度与暴雨区范围和降水强度相吻合;垂直速度大值区的维持时间与强降水的维持时间相一致;垂直速度、假相当位温和水汽通量散度的增大和减小,可作为降水增大和减弱的重要依据之一;暴雨区主要落在700 h Pa螺旋度场大值区内,所以螺旋度分析可为台风暴雨落区预报提供参考依据。  相似文献   

4.
使用台风最佳路径、黑龙江省83个国家基本气象站日降水量资料及NCEP NC再分析资料,对近60年黑龙江省台风活动规律、台风暴雨时空分布和环流形势及各物理量统计特征等进行分析。结果表明:2010年以后造成暴雨的台风个数增加,2015年之后台风暴雨强度持续增加,2020年达到最强。黑龙江省台风暴雨站次最多的时间是7月下旬至9月上旬。黑龙江省受台风影响出现暴雨的次数自东南向西北递减,暴雨次数多的站点一般与地形有关。将台风暴雨过程的高空环流形势分为3型8类,A型暴雨过程以台风环流降水为主,多数为稳定性降水,降水持续时间较长,B型和C型暴雨过程有较强冷空气参与,对流活跃,通常雨强较大。给黑龙江省带来大范围暴雨的环流形势有5类。以A-Ⅱ和C-Ⅰ两种环流形势出现的台风个数最多,A-Ⅱ和B-Ⅱ造成的暴雨范围最广。黑龙江省台风暴雨过程低空均有低涡活动;水汽主要来自日本海和黄渤海;低层辐合中心与暴雨区有较好的对应关系。A-Ⅱ类台风暴雨的各个物理量特征最突出(假相当位温和比湿略小于B-Ⅱ类);B-Ⅱ类台风暴雨过程的暖湿空气最强,尽管动力条件稍差,但较好的热力和水汽条件也足以造成大范围的暴雨天气,成为平均单个过程出现暴雨以上站次最多的类型。  相似文献   

5.
利用地面观测资料和NCEP1°×1°格点再分析资料,对庐山夏季强降水的天气系统进行统计分析和物理量计算,结果表明:台风是庐山后汛期暴雨或大暴雨产生的主要天气系统;台风暴雨分为A型和B型两种降水类型;涡度、散度、螺旋度、垂直速度、水汽通量与水汽通量散度等物理量与台风暴雨关系密切,物理量特征阈值对确定台风暴雨预报有一定指导意义;24°N~30°N、116°E~120°E为物理量特征区域,各物理量在特征区域中超过阈值时,庐山极有可能有暴雨发生。  相似文献   

6.
两次严重影响湖南的登陆台风水汽场特征数值模拟   总被引:6,自引:2,他引:4       下载免费PDF全文
针对造成湖南省特大暴雨过程的"碧利斯"和"圣帕"两次台风,利用气象、水文加密观测资料及NCEP再分析资料,结合中尺度数值预报模式AREM的模拟结果,对它们独特的水汽场特征进行了对比分析.结果表明:这两次台风的共同特点是有两条主要水汽输送通道,即与西南季风相联系的偏南风水汽通道和与台风低压环流相联系的偏北风水汽通道;凝结降水的水汽主要来源于低层风场辐合和水汽平流,并通过局地垂直运动再将其输送到中高层;在湘东南强降水区上空始终存在强的水汽水平辐合和水汽垂直输送,比较而言,"圣帕"台风暴雨区上空水汽通量更强,但水汽通量辐合强度却小于"碧利斯"台风,水汽辐合层也不及后者深厚,但前者由于自身旋转性强,低压环流中心南部的切变较长时间维持,并自东向西转动,使得强降水持续时间更长,过程雨量更大,影响范围也更大."碧利斯"水汽主要源地较"圣帕"更加偏南,水汽辐合更强,与南海季风的相互作用更显著,降水时段集中,局部地区短时间内的降雨强度甚至超过了"圣帕".  相似文献   

7.
《气象研究与应用》2016,(河南汛)
利用常规气象观测资料、土壤相对湿度监测资料以及数值模式预报产品对2014年汛期的久旱转雨过程进行了分析和检验。结果表明:环流调整是久旱转雨过程的必要条件;500h Pa高空槽东移配合中低层切变线和低空急流东伸加强及地面倒槽发展形成了此次天气过程;低空急流发展为此次暴雨提供充沛的水汽,暴雨落区与水汽通量和水汽通量散度以及垂直速度大值区位置相吻合,另外850~700h Pa大于64℃是此次暴雨预报的指标之一。对T639和ECMWF模式产品检验分析表明,两个模式都对稳定性降水预报有优势,ECMWF-THIN模式对降水预报有48小时提前量。  相似文献   

8.
选取2019年9月7-8日NCEP/NCAR(1°×1°)再分析资料,分析了降水实况、卫星云图、环流形势、物理量场。结果表明:此次暴雨过程主要受台风登陆后减弱的热带风暴影响,副热带高压的维持为水汽的输送与台风的北进起到了促进作用,台风外围水汽成为此次降水的主要水汽来源,高低空急流耦合加强了动力条件,暴雨落区与高空急流的右侧、低空急流的左侧、垂直运动强上升区及水汽通量散度辐合区有较高的吻合度。  相似文献   

9.
“莫拉克”是2009年登陆我国热带气旋中影响范围最广、造成损失最大的台风.“莫拉克”带来的强降水导致台湾南部发生50年来最严重的水灾,福建、浙江等省的部分站点过程雨量超过50年一遇.因此,在台风暴雨(强降水)预报中,能否准确把握其落区就显得尤为重要.本文首先利用中尺度非静力数值模式WRF对台风“莫拉克”进行高分辨率数值模拟(三层嵌套,最高分辨率为2 km).模式较好地再现了台风中心的移动路径、强度;模拟的降水分布区域与实况也较为相符.利用再分析资料及模拟的高分辨率资料对暴雨成因进行诊断分析,表明造成此次强降水过程的水汽主要由西南季风输送,并且垂直运动旺盛,贯穿整个对流层.根据集合动力因子预报方法,运用广义湿位温、对流涡度矢量垂直分量及水汽散度通量对暴雨落区进行了诊断和预报,发现广义湿位温等值线的“漏斗状”区域与暴雨落区对应关系显著;基于NCEP-GFS每日四次的预报场资料,利用对流涡度矢量和水汽散度通量做出的降水落区预报表明,二者对降水落区均有一定的指示意义.强降水主要位于对流层中低层对流涡度矢量垂直积分量的梯度大值区附近,其时间演变与观测降水的演变具有相当高的一致性;水汽通量散度抓住了垂直运动和水汽散度这两个引发暴雨的关键因子,对降水的发生范围和强降水极值中心的判断更为准确.这三个动力因子都可以为“莫拉克”台风暴雨(强降水)落区提供信号,对台风暴雨落区具有一定的诊断和预报意义.  相似文献   

10.
近50年黄河流域降水量及雨日的气候变化特征   总被引:1,自引:0,他引:1  
利用1961-2010年黄河流域143个测站降水量和雨日资料,分析了黄河流域年、季降水和雨日的时空变化特征。结果表明:(1)多年平均年降水量和年雨日空间分布特征均呈北少南多。(2)年降水量和年雨日变化趋势相一致,二者均呈减少趋势,年降水量负趋势的测站数达81.8%,年雨日负趋势达88.8%,即年雨日较年降水的减少趋势更显著。(3)在季节变化方面,除冬季外,春、夏和秋季的降水量和雨日都是负趋势,特别是秋季减少最显著。四季降水量通过显著性水平检验的负趋势站数从多到少依次为秋季春季夏季冬季,雨日则为秋季夏季春季冬季。(4)流域年降水和年雨日一致突变点为1985-1986年,其降水量及雨日减少主要原因是大气环流发生了变化,1986年以前黄河流域降水和雨日偏多是由于季风较强,使水汽得到有效输送和河套西北部的风向辐合造成的,而突变后降水和雨日减少与季风偏弱、缺乏有效的水汽输送和蒙古至河套的反气旋环流有关。  相似文献   

11.
一般认为相似路径台风的影响大致相似,但实际上相似路径台风的风雨分布尤其是暴雨分布往往有很大差异,因此,对相似路径热带气旋“海棠”(0505)和“碧利斯”(0604)暴雨成因的对比分析有助于加强台风暴雨发生机制的认识和预报。“海棠”(0505)和“碧利斯”(0604)逐日降水分布对比分析表明,两者登陆前降水分布类似,而登陆后降水分布差异比较大。利用NCEP/GFS 1 °×1 °分析资料对热带气旋登陆前后天气形势、水汽通量和水汽通量散度进行诊断分析,结果表明:“海棠”(0505)和“碧利斯”(0604)登陆前引起浙闽沿海地区大降水主要是热带气旋外围偏东气流和地形共同影响下形成。“海棠”登陆后,维持在浙江东部沿海东南风急流不断输送水汽到“海棠”倒槽内引起浙东南沿海强降水,深入内陆后,降水主要由“海棠”自身环流携带的水汽辐合引起的,降水比沿海地区明显减弱;而“碧利斯”登陆后,有明显的南海季风环流输送水汽并入热带气旋南侧环流,在其南侧形成偏南风急流,使南侧水汽输送得到明显加强,造成“碧利斯”南侧水汽通量辐合,北侧水汽通量辐散,南侧降水比北侧降水强很多;深入内陆后,“碧利斯”环流仍维持并引导北方槽后弱冷空气渗透到其西南侧,使南侧降水进一步增幅。本文还探讨了包括热带气旋外核在内区域平均垂直风切变和热带气旋强降水落区的关系,结果表明:“海棠”和“碧丽斯”大暴雨落区均对应于暴雨区区域平均垂直风切矢量左侧水汽通量散度负值区。“海棠”垂直风切变矢量平行于移动路径并指向移动路径后方是造成“海棠”强降水分布在其移动路径右侧的重要原因,“碧利斯”垂直风切变矢量平行于移动路径并指向移动路径前方是造成“碧利斯”强降水分布在其移动路径左侧的重要原因。因此,利用垂直风切结合水汽输送条件可以作热带气旋大暴雨落区预报可能是一种比较有效的方法。  相似文献   

12.
利用常规观测资料从环流形势、物理量场、卫星云图等方面对1117号强台风“纳沙”移动路径及其造成玉林强降水过程进行分析.结果发现:西太平洋副高强盛稳定是台风路径趋势稳定少变的主要原因.冷空气侵入、西南季风气流和副高西南侧东南气流的共同作用增强了台风暴雨.水汽通量散度负值区与降水区域有一定的对应关系,水汽通量散度梯度最大的区域对台风暴雨落区预报有一定的指示意义.低层辐合、高层辐散产生强烈的垂直上升运动,为强降雨的产生提供了有利条件,高层涡度最大负值出现的时段与玉林市降雨最强时段相对应.  相似文献   

13.
以2013年两个路径相似但大暴雨分布有较大差别的台风“苏力”和“潭美”为研究对象,从台风结构及其动力、水汽等方面讨论了它们的降水条件差异,结果表明:台风登陆过程中,“苏力”结构发生南倾是造成台风南侧大暴雨产生的主要原因;副高南侧弱东风气流导致“苏力”北侧水汽辐合上升运动较弱,水汽辐合呈现南强北弱的分布;流场垂直运动南强北弱的不均分布是台风环流南侧大暴雨产生的有利动力条件;台风受南亚高压的东南侧东北气流影响,二者的相对位置,有可能影响到台风辐合区随高度向南倾斜和高层辐散场南强北弱的分布,从而对台风暴雨南强北弱的分布产生重要影响;中层弱冷空气侵入台风环流西南侧,对台风南侧暴雨增幅起重要作用。台风“潭美”结构对称,低空西南与东风两支急流将充沛水汽汇合于台风环流北侧,副高南侧东风急流的增强和闽东北地形抬升对台风北侧暴雨的增幅作用十分显著。台风位于南亚高压东环的西南侧,受偏东气流的分流辐散影响,“潭美”辐合中心随高度北倾和中层弱冷空气侵入台风环流北侧,也是促进台风北侧暴雨增强的原因。   相似文献   

14.
利用2010—2014年共5 a贵州省印江县17个自动站观测资料和Micaps实况资料,采用相关对比分析、汇总归类等统计方法,分析了印江县暴雨时空分布及天气环流形势特征。结果表明:近5 a来印江县暴雨次数和过程降水量均呈增长趋势,暴雨主要发生在4—7月,且7月最多,占全年累计总数的50%,大暴雨天气过程以2 d居多,最长持续3 d;印江多暴雨区主要集中在印江县中北部、东北部至梵净山西部一带;印江暴雨天气可分为3类环流型,即冷锋+高空槽+切变型、低涡切变+高空短波槽型、台风倒槽型;印江县暴雨与该区域的垂直速度、假相当位温、比湿、水汽通量散度、水汽通量、涡度、K指数、SI指数、LI指数有密切关系。  相似文献   

15.
利用常规气象观测资料、台风最佳路径数据集资料、地面-卫星-雷达三源融合逐小时降水产品(0.05°×0.05°)、FY-2G云顶亮温(0.1°×0.1°)、NCEP/NCAR FNL(1°×1°)再分析资料,对2019年9号台风“利奇马”影响期间2019年8月11日发生的山东特大暴雨过程进行分析。结果表明:1)强降水主要受台风倒槽的影响,台风倒槽在山东中部暴雨区长时间稳定维持,台风东侧的低空东南急流把东海北部的水汽和能量向暴雨区输送,配合200 hPa高空急流的“抽吸作用”,在暴雨区上空辐合抬升,造成具有中尺度特征的暴雨。2)强降水区存在的正涡度区伴随强烈的上升运动、低层辐合、高层辐散的结构和次级环流耦合发展,为此次台风暴雨过程提供了有利的动力条件,而且动力条件的演变在此次台风暴雨过程中的作用比热力条件更重要。3)850 hPa水汽通量辐合中心,以及相匹配的在垂直方向的强上升运动区,对强降水落区和雨强有一定的指示意义。  相似文献   

16.
利用常规观测资料、加密自动站资料、NCEP 1°×1°分析资料、FY-2E卫星及雷达资料等,采用诊断分析和对比分析方法,分析了2014年9月27—28日豫中南区域性暴雨的环流形势、强降水成因、中尺度特征及该过程与夏季暴雨的异同。结果表明:本次秋季暴雨过程是高空低槽、副高、中低层切变线、高低空急流、地面倒槽等系统共同作用的结果。持续的水汽辐合为暴雨提供了充沛的水汽条件,水汽通量大值区与水汽辐合中心分布及暴雨落区吻合;低层涡度的发展和水平风的切变导致垂直涡度发展,动力条件较好;K指数高值区对预报暴雨尤其强降水落区有较好指示意义,暴雨中心上空θse值随高度递减,高层低能舌叠加在低层高能区之上,强降水落区位于二者交汇的区域。低层偏东气流与高空槽前西南气流配合产生经向次级环流,上升运动增强;200 h Pa西风急流稳定维持,导致高层抽吸作用明显,有利于区域性暴雨发展。降水云团tbb一般在-32℃左右,发展高度明显低于夏季暴雨云团;降水前期回波为层云回波,后期转变为混合性回波,强降水主要由混合降水回波中的强对流云团导致的。中高层没有明显强冷空气,低层冷空气作用较大,东路冷空气一方面形成冷垫造成动力抬升,另一方面在低层与暖湿气流形成强水汽辐合,是本次秋季区域性暴雨的形成机制,也是不同于夏季暴雨的主要特征。  相似文献   

17.
台风“艾利”降水的非对称结构分析   总被引:9,自引:2,他引:7  
利用NASA提供的热带测雨卫星TRMM(Tropical Rainfall Measuring Mission)的高分辨率资料分析了2004年台风“艾利”降水的结构特征,发现在不同发展阶段其特征存在着很大的不同。为了分析产生降水非对称的原因,又利用NCEP(the National Centers for Environmental Prediction) 再分析资料计算了垂直积分的水汽通量矢量。结果表明,本次过程由于伴随着双台风特有的环流形势,其北侧的偏东气流和南侧的西南气流对水汽输送的作用,在台风“艾利”发展的不同时期存在很大的不同,形成了这次台风过程特有的水汽来源特点。台风对流强降水区、水汽通量最大区和强上升运动区三者的分布在台风不同发展阶段存在着较大的差异,正是水汽通量和垂直运动的非均匀分布才造成这次台风降水的非对称分布。  相似文献   

18.
分析了2010年1月21-23日发生在防城港市冬季连续性暴雨的环流系统、影响系统、及稳定度、水汽和动力条件,分析结果表明,这次冬季强降水是在深厚南支槽、低空急流、较强冷空气和低层强切变线等多个系统的配合条件下产生的。此次暴雨过程水汽供应充沛,有强烈的上升运动,水汽通量大值中心、负散度中心、及负垂直速度中心对防城港市冬季暴雨预报有明显的指示作用。  相似文献   

19.
利用降水、NCEP2再分析资料及GFS预报场资料对2011年秋季关中地区强降水期间的水汽来源、输送、收支进行了研究。结果表明:与夏季降水不同的是关中秋季东边界的水汽输入与降水的开始、结束和强度有非常密切的联系,850 h Pa江淮地区较强的偏东风或东风急流可以作为关中秋季强降水的一个预报指标。秋季台风的发生、移动路径和强度对关中降水有重要影响,台风路径偏东偏北、台风强度偏弱、关中降水量偏少,而副热带高压偏西偏强时,在其南侧的偏东风引导下,台风路径偏西数量明显偏多、强度偏强,关中地区降水量偏多,暴雨频发。  相似文献   

20.
台风“莫兰蒂”引发的福建和浙北暴雨分析   总被引:1,自引:0,他引:1  
采用了NCEP的1°×1°格点资料,通过形势场、物理量场的诊断分析,研究了“莫兰蒂”台风暴雨。结果表明,西太平洋副热带高压和高空槽为暴雨提供了良好的大尺度环流条件。暴雨区的水汽条件是良好的,暴雨中心与水汽通量的辐合中心是一致的。暴雨区对应垂直运动最强区,暴雨的发生发展需要强烈且持续的垂直上升运动。在对流层低层,暴雨区的假相当位温都是随高度减小的,浙北地区存在假相当位温密集陡峭区,有利于该地暴雨的发生发展。湿位涡能很好的指示暴雨落区,福建暴雨主要是由对流不稳定引起,而浙北暴雨受正压和斜压不稳定共同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号