首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
1 IntroductionInthedeepseawithawatertemperaturelowerthan5℃andtheseabottom ,theor ganicmattersareoxidizedmainlybytheaerobicbacteria (BenderandHeggie 1 984;Her bert 1 986) ,whichmeansthattheaerobicbacteriainthisenvironmentareratherabun dant.Thearcticseaareaisanareawhereenvironmentispermanentlycold ,butsomere searchresults (Sahmetal.1 998)indicatethattherearedominantbacteria eubacteriainthearcticseawaterandsediment,andtheiradaptationtotemperaturehasnosubstantialdifferenceincomparisonwiththatof…  相似文献   

2.
The compounds of sterols such as C27 ,C2s ,C29 and C30 are recorded from C-8 core of the Chukchi Sea. The double bond position is located at 5-, 5,22 as well as 22-,24-. The compound of sterols such as C27 ,C28 ,C29 are recorded from B2-9 core of the Bering Sea. The double bond position is located at 5-, 5, 22 as well as 22. The composition characteristics of sterols indicate that the substance is mainly contributed by the terrigenous origin and marine silicate organisms. The results are also suggest that the record of abnormal sterols from the surface sediments (2 -0 era)in the Chukchi Sea and the Bering Sea represent the period from 1980s to the late 1990s. The strong signal of the Arctic warming is preserved in the sediments, which indicates the eco - environmental change responding to climatic effect of circumjacent.  相似文献   

3.
Nitrate is considered the nutrient that limits new primary production in the southeastern Bering Sea shelf. Nitrate regenerated through biological nitrification has the potential to significantly support primary production as well. Here we use measurements of the specific rate of water column nitrification in a 1-D ecosystem model to quantify the resupply of nitrate from nitrification in the middle shelf of the southeastern Bering Sea. Model sensitivity studies reveal nitrification rate is an important control on the dominant phytoplankton functional type, and the amount of nitrate in su mer bottom waters and in the winter water column. Evaluation of nitrification using the model supports the hypothesis that increases in late-summer nitrate concentrations observed in the southeastern Bering Sea bottom waters are due to nitrification. Model results for nitrate replenishment exceed previously estimated rates of 20-30% based on observations. The results of this study indicate that nitrification, potentially the source of up to - 38% of the springtime water column nitrate, could support - 24% of the annual primary production.  相似文献   

4.
Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.  相似文献   

5.
During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.  相似文献   

6.
高氯酸盐同位素测试技术能够为环境介质中高氯酸盐污染物来源的判识、降解途径与修复效果的监测与评价提供重要的分析工具。在国内建立高氯酸盐稳定氯、氧同位素测试技术,采用真空热解方法组建同位素真空制样系统,并结合GasBenIIIRMS联用技术实现在线高精度测试。实验结果表明,真空制样系统稳定性高,最佳热解反应温度为650℃,样品量约10μmol ClO-4。δ18O、Δ17O和δ37Cl的方法分析精度分别为0.3‰,0.04‰和0.1‰,达到国际水平,为我国高氯酸盐环境污染的防治研究提供了先进的方法与手段。   相似文献   

7.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007. The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the PaCific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent (2000-2006) average. The simulated summer (3 months ) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv, which is the highest in the past three decades of the simulation and is 20% higher than the recent average. Particularly, the Pacific water inflow in September 2007 is about 0.5 Sv or 50% above the 2000-2006 average. The strengthened warm Pacific water inflow carries an additional 1.0 x 1020 Joules of heat into the Arctic, enough to melt an additional 0.5 m of ice over the whole Chukchi Sea. In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region, contributing to the warming of surface waters in that region. The heat is in constant contact with the ice cover in the region in July through September. Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007, likely contributing to up to O. 5 m per month additional ice melting in some area of that region.  相似文献   

8.
The δ18O and δD values of gypsum crystallization water together with δ18O and δ34S of sulfates were used as reliable techniques to study source of sulfur and mode of gypsum formation in selected central Iraqi soils.Six representative pedons on different geologic units were studied.The slope of 3.2 for δ18O and δD plot of gypsum crystallization water showed that evaporation was the major process of gypsum deposition in the study area.The mean δ34S value of +17.58 ‰ showed that Cretaceous sea sulfate followed by Tertiary is the source of sulfur in studied soils.The heavier δ34S value(+17.58 ‰) of the study area compared to central Iran(+13.5 ‰) proved that gypsum in central Iraq soils has been formed in the later stage of evaporation and that Iraqi landforms were cut off from the Tethys seaway after central Iran was evolved.  相似文献   

9.
戴里铅锌矿集区位于印度尼西亚苏门答腊岛西北部,是一个主要产于页岩、具有巨型规模的Sedex型铅锌矿。通过系统的流体包裹体测试及H、O、S、Pb等同位素分析,以对其成因进行约束。分析结果表明:①戴里铅锌矿流体包裹体均一温度范围为189~315℃,峰值为220~240℃;②δDV-SMOW值范围为-68.7‰~-76.4‰,平均为-72.9‰,δ18OV-SMOW值范围为+5.9‰~+19.5‰,平均为+16.6‰;③黄铁矿δ34SCDT值为正值,集中分布在+25.49‰~+26.36‰之间;④铅同位素显示较高的μ值(9.92~10.17,平均值为10.04)和ω值(38.06~40.51,平均值为39.26)。该矿床成矿流体温度为中温(220~240℃),成矿流体可能以岩浆水为主,有少量浅源水的加入,硫、铅均为单一来源,其中硫主要来自海水,铅来源于上地壳。   相似文献   

10.
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   

11.
Abundance,biomass and composition of the ice algal and phytoplank-ton communities were investigated in the southeastern Laptev Sea in spring 1999.Diatoms dominated the algal communities and pennate diatoms dominated the dia-tom population.12 dominant algal species occurred within sea ice and underlyingwater column,including Fragilariopsis oceanica,F.cylindrus,Nitzschiafrigida,N.promare,Achnanthes taeniata,Nitzschia neofrigida,Naviculapelagica,N.vanhoef fenii,N.septentrionalis,Melosira arctica,Clindrothecaclosterium and Pyrarnimonas sp.The algal abundance of bottom 10 cm sea icevaried between 14.6 and 1562.2×10~4 ceils l~(-1)with an average of 639.0×10~4cells l~(-1),and the algal biomass ranged from 7.89 to 2093.5μg C l~(-1)with an av-erage of 886.9μg C l~(-1),which were generally one order of magnitude higherthan those of sub-bottom ice and two orders of magnitude higher than those ofunderlying surface water.The integrated algal abundance and biomass of lower-most 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 mwater column,respectively,suggesting that the ice algae might play an importantrole in maintaining the coastal marine ecosystem before the thawing of sea ice.Icealgae influenced the phytoplankton community of the underlying water column.However,the“seeding”of ice algae for phytoplankton bloom was negligible be-cause of the iow phytoplankton biomass within the underlying water column.  相似文献   

12.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

13.
Pacific water exits the Chukchi Sea shelf through Barrow Canyon in the east and Herald Canyon in the west, forming an eastward-directed shelfbreak boundary current that flows into the Beaufort Sea. Here we summarize the transformation that the Pacific water undergoes in the two canyons, and describe the characteristics and variability of the resulting shelfbreak jet, using recently collected summertime hydrographic data and a year-long mooting data set. In both canyons the northward-flowing Pacific winter water switches from the western to the eastern flank of the canyon, interacting with the northward-flowing summer water. In Barrow canyon the vorticity structure of the current is altered, while in Herald canyon a new water mass mode is created. In both instances hydraulic effects are believed to be partly responsible for the observed changes. The shelfl)reak jet that forms from the canyon outflows has distinct seasonal configurations, from a bottom-intensified flow carrying cold, dense Pacific water in spring, to a surface-intensified current advecting warm, buoyant water in summer. The current also varies significantly on short timescales, from less than a day to a week. In fall and winter much of this mesoscale variability is driven by storm events, whose easterly winds reverse the current and cause upwelling. Different types of eddies are spawned from the current, which are characterized here using hydrographic and satellite data.  相似文献   

14.
This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes.  相似文献   

15.
The Bering Sea circulation is derived as a variational inverse of hydrographic profiles( temperature and salinity) , atmospheric climatologies and historical observation of ocean curents. The important result of this study is estimate of the mean climatological sea surface height (SSH) that can be used as a reference for satellite altimetry sea level anomaly data in the Bering Sea region. Numerical experiments reveal that, when combined with satellite altimetry, the obtained reference SSH effectively constrains a realistic reconstruction of the Amukta Pass circulation.  相似文献   

16.
Summary of results from a high - resolution pan - Arctic ice - ocean model are presented for the northern North Pacific, Bering, Chukchi, and Beaufort seas. The main focus is on the mean circulation, communication from the Gulf of Alaska across the Bering Sea into the western Arctic Ocean and on mesoscale eddy activity within several important ecosystems. Model results from 1979 -2004 are compared to observations whenever possible. The high spatial model resolution at 1/12o (or -9 - km) in the horizontal and 45 levels in the vertical direction allows for representation of eddies with diameters as small as 36 km. However, we believe that upcoming new model integrations at even higher resolution will allow us to resolve even smaller eddies. This is especially important at the highest latitudes where the Rossby radius of deformation is as small as 10 km or less.  相似文献   

17.
With parameterized wave mixing, the circulation and the tidal current in the Bering Sea were simulated simultaneously using the three-dimensional Princeton Ocean Model. The simulated circulation pattern in the deep basin is relatively stable, cyclonic, and has little seasonal change. The Bering Slope Current between 200-1000 m isobaths was estimated to be 5 Sv in volume transport. The Kamchatka Current was estimated to be 20 Sv off the Kamchatka Peninsula. The Bering shelf circulations vary with season, driven mainly by wind. These features are consistent with historical esti- mates. A counter current was captured flowing southeastward approximately along the 200 m isobath of the Bering Slope, opposite to the northwestward Bering Slope Current, which needs to be validated by observations. An upwelling current is located in the shelf break ( 120-1000 m) area, which may imply the vertical advection of nutrients for supporting the Bering Sea Green Belt seasonal plankton blooms in the breakslope area. The Bering Slope Current is located in a downwelling area.  相似文献   

18.
台风对中国东南海域叶绿素a浓度影响的遥感研究   总被引:1,自引:0,他引:1  
通过对台风过境前后近一个月的MODIS卫星3A级叶绿素a浓度及海表温度数据的比较与分析,发现海表温度,海表叶绿素a浓度均受到较大的影响,其中海表温度平均下降2~3℃,最高下降近10℃;同时叶绿素a浓度在湛江、阳江海域升高约1.43倍,在东海海域平均升高2.44倍,最高可达9.75倍,并且叶绿素a浓度增长有一个约3~5 d的延迟效应。由此可见,利用卫星遥感资料监测台风对海洋叶绿素a浓度、海表表温度等环境参数的变化有应用前景。  相似文献   

19.
ImODUcrIONThewesternPadricconsistSofaseriesofrnarginalbasins(twoofwhicharetheSrsandSuluSea)thatareseparatalfromeachotherbysdriofvaryingdepths.The25OOmdepthsiliseparatingtheSrsfromthewesternNorthPadricallowiPadricinteediatewatertoentertheSCS.Inconhast,theSuluSeaiscomPldelysurmundedbyasill,mostofwhichisshallowerthanlOomindepth.Thedeepestchanne1intotheSLduSeais42Omdeep(MindoroStrait)andcutSacrossthesillthatseparateStheSuluSeafromtheSrs.TheseenvironmntSresultalinspeda1hydrographicse…  相似文献   

20.
北极海冰范围时空变化及其与海温气温间的数值分析   总被引:1,自引:0,他引:1  
本文利用美国国家冰雪中心提供的1989-2014年海冰范围资料,分析了北极海冰范围的年际变化和季节变化规律。分析发现,北极海冰范围呈减少趋势,每年减小5.91×104 km2,夏季减少趋势显著,冬季减少趋势弱。北极海冰范围显现相对稳定的季节变化规律,海冰的结冰和融化主要发生在各个边缘海,夏季期间的海冰具有融化快、冻结快的特征。结合海温、气温数据,进行北极海冰范围与海温、气温间的数值分析,结果表明北极海冰范围变化通过影响北极海温变化进而影响北极气温变化。海冰范围的季节变化滞后于海温和气温的季节变化。基于北极考察走航海温气温数据,进行楚科奇海海冰范围线与海温气温间的数值分析,发现楚科奇海海冰范围线所在区域的海温、气温与纬度高低、离陆地远近有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号