首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
陈羿辰  何晖 《大气科学》2017,41(3):578-592.
本文统计分析了北京地区近三年的有效降水,重点研究了积层混合云降水特点并对其分类,发现积层混合云降水出现频次约占总降水次数的61%,其中积层混合云降水以积层连结型和水平混合型为主,二者之和占近80%。重点分析了积层混合云中对流和层云两种不同特点降水类型的宏微观结构,确立了反射率因子Z、温度T、粒子含水量M、催化剂AgⅠ(碘化银)活化率NE和粒子相态HTC(hydrometeor type classification)为人工增雨潜力识别指标及这些识别指标的取值范围,同时也根据研究现状和人工影响天气需求总结制定出人工增雨潜力等级。利用偏振雷达构建模糊逻辑识别算法对积层混合云三种降水类型进行增雨潜力区域识别研究,结果表明:(1)对于播撒碘化银增雨来说,积层混合云的增雨潜力区在垂直方向上可分为上、中、下三层,上层(增雨等级为“不适合”)和下层(零度层及以下)分别受含水量和温度等影响不适合增雨,中间层(增雨等级大于等于“等级一”)是可增雨区域;(2)积层混合云中层云区增雨潜力较小,对流云区可增雨潜力要远大于层云区,开式流场型与积层连结型可增雨潜力要大于水平混合型;(3)当降水云中识别出霰粒子时,其附近的大部分区域会有较好的增雨潜力。通过偏振雷达实例检验和数值模式模拟在积层混合云不同部位播撒碘化银催化试验发现,在增雨潜力较好的区域催化有很明显增雨效果,模拟试验结论与偏振雷达识别增雨潜力区结果也基本一致,说明基于偏振雷达的增雨潜力区识别方法和结果是具有参考意义的。  相似文献   

2.
江苏盛夏飞机人工增雨作业的雷达气象学分析   总被引:7,自引:4,他引:7  
白卡娃 《气象科学》1999,19(4):396-402
本文对盛夏季节33次飞机人工增雨作业过程作业前后的天气雷达回波资料、天气背影和地面降水资料进了分析,发现作业效果明显的云系主要是:浓积云或浓积云群;复合型层状云;积层混合云;其中最明显的是积层混合云。通过分析,提出了一套飞机对冷云部位进行人工增雨作业的具体指标和作业方式。  相似文献   

3.
一次积层混合云降水实例的数值模拟分析   总被引:8,自引:1,他引:7  
于翡  姚展予 《气象》2009,35(12):3-11
观测显示,积层混合云有自己独特的动力热力结构,降水过程也有自己的特点,但过去关于积层混合云的实例模拟工作较少.2007年9月28日在我国华北地区发生了一次积层混合云降水过程.利用WRF-ARW中尺度数值模式,对这一个例进行了实例模拟,并结合常规观测、卫星和雷达资料分析模拟结果,表明:此次积层混合云系是降水云系减弱,层状云发展形成的.在降水物理过程中,此次积层混合云不仅具有积云和层云形态混合的特征,还具有冷云过程和暖云过程共存的相态混合的特征;中层的大范围辐合和相应的较均匀上升气流场支撑着层状云,而在均匀上升气流场中的波动导致了对流云镶嵌其中;有迹象表明,条件对称不稳定是维持此次积层混合云发展的动力因子.  相似文献   

4.
洪延超 《气象学报》1996,54(6):661-674
用文(Ⅰ)积层混合云数值模式及暴雨云的平均大气层结模拟研究了暴雨积层混合云的演变过程、两种云的相互作用、云体结构及降水特征,并分析了暴雨产生的物理原因。结果表明,在积层混合云中,当对流发展时其周围层状云减弱甚至消散,层状云的降水强度随着离开对流云距离增大而增大。数值试验说明:层状云给积云提供良好的发展条件,饱和的环境及伴随层状云的辐合场使对流云具有长生命期、产生持续性的高强度降水和间歇性的特高强度降水;积层混合云是一非常有效的降水系统,这些及冰相微物理过程是暴雨产生的主要物理原因。  相似文献   

5.
湖南秋季积层混合云系飞机人工增雨作业方法   总被引:2,自引:1,他引:1       下载免费PDF全文
统计分析2007—2016年秋季湖南省长沙市地面气象观测资料、湖南省飞机人工增雨作业资料, 得到湖南省秋季积层混合云系的降水分布情况、一般结构特征和相应的飞机增雨作业方法。使用多普勒天气雷达、GRAPES_CAMS数值模式和中小尺度气象站网等资料对典型作业天气过程进行云降水物理和数值模拟分析, 采用成对对流云和基于TREC算法的回波跟踪等方法进行作业效果评估。归纳得到湖南省秋季积层混合云系人工增雨作业条件判别的12个宏微观指标, 探讨在使用运7飞机、碘化银烟条作业装备条件下, 开展飞机增雨作业的最佳催化时机、部位和剂量。针对积层混合云系中的降水性层状云系、积云对流泡, 飞机增雨适宜作业的区域、播撒高度和催化剂量:在过冷高层云的-15~-5℃层, 播撒达到30 L-1的人工冰晶浓度; 在过冷积云的-15~-7℃层, 静力催化使冰晶浓度达到30 L-1或动力催化达到100 L-1。这些方法在实践中取得了较好的人工增雨作业效果。  相似文献   

6.
大连市火箭人工增雨流动作业技术与业务流程   总被引:2,自引:0,他引:2  
李红斌  张殿刚  张靖萱  赵繁盛  濮文耀  赵雅轩 《气象》2014,40(10):1271-1278
文章通过统计和分析大连地区1975—2004年30年过程降水≥5 mm的40个天气样本资料,总结了主要降水形势为大槽型、中纬度系统型、北涡型和南涡型4种类型;同时分析了2003年6—10月过程降水在5 mm以上的22个多普勒雷达观测个例,总结得出大连地区主要降水云系为层状云和积层混合云,且积层混合云多于层状云,表明大连地区更适宜开展火箭增雨作业,进而统计和建立了火箭增雨的雷达作业预警、决策判别指标模型;并研究了通过自然降水落区与社会需水综合分析确定作业区域的技术方法;根据雷达预警判别指标权重分析,侧重研究了作业车辆适时调度技术方案及业务流程,为火箭人工增雨科学、高效作业提供保障。  相似文献   

7.
积层混合云结构和云微物理的数值模拟   总被引:3,自引:0,他引:3  
对三维非静力中尺度模式ARPS的云微物理方案进行了改进,利用改进后的模式模拟了华北地区的积层混合云降水个例,通过对模拟结果的分析并结合实况资料研究了积层混合云的降水特征、云物理结构特征和微物理过程。结果表明,积层混合云降水分布不均匀,雨区中存在多个强降水中心,云系中微物理量在水平和垂直方向上分布都不均匀,积云中的垂直液态水积分含量大大高于层云中含量,此次降水冰相过程占主导地位,霰的融化是最主要的雨生成项。  相似文献   

8.
积层混合云结构特征及降水机理的个例模拟研究   总被引:2,自引:1,他引:1  
何晖  高茜  刘香娥  周嵬  贾星灿 《大气科学》2015,39(2):315-328
积层混合云是我国一种重要的降水系统, 其降水既有对流云又有层状云特征。基于积层混合云的重要性, 本文利用中尺度数值模式WRF(Weather Research and Forecasting Model), 结合三维粒子运行增长模式对2012年5月29日北京地区的一次积层混合云降过程进行了模拟研究。模拟的降水与雷达回波与实测结果基本一致。在此基础上, 重点分析了混合云系中积状云与层状云各自的微物理结构特征与降水的发生机理等。结果表明:降水过程云内存在着明显的“播种—供给”机制, 层状云中“播种—供给”机制相对简单。而对流云区中由于降水粒子可以发生上下多次的循环增长, “播种—供给”机制可在云的上下层间双向进行, 云中粒子群可以增长得更大。在积层混合云中, 在低层, 层状云中已有的水凝物粒子进入内嵌的积云块中, 而在高层水成物粒子又从积云中落到层云中, 积层混合云系充分发挥了积云和层云各自的优势, 从而降水效率较高。  相似文献   

9.
一次山地积云并合扩展层化过程的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
因复杂地形下热力和动力抬升对近地面空气的扰动作用,贵州地区容易形成内部嵌有许多小对流单体的积层混合云.选取2005年5月29日发生在贵州省的一次积层混合云降水个例进行分析,并利用WRF模式模拟该云系的生成、发展过程.结果表明:积层混合云由积云并合扩展层化形成,其发展过程经历三个典型的并合阶段.云系的降水特点是降水范围很大,分布不均匀,雨区中存在多个强降水中心,降水量累计最大值可达60 mm,且强降水中心与云中小对流单体的位置对应;积层混合云形成过程中,地面产生强降水的最终原因是,云并合过程中释放的不稳定能量改变了云中的气流场和含水量场.  相似文献   

10.
2017年5月22日河北省出现一次低槽冷锋降水过程,河北省人工影响天气办公室利用机载粒子测量系统在太行山东麓区域对积层混合云进行了5次垂直探测。依据这些飞机探测资料结合石家庄天气雷达和邢台皇寺观测站的Ka波段云雷达资料分析了积层混合云的微物理结构和增雨作业条件。结果表明,降水云系出现在低槽槽前西南气流中,积层混合云由冷、暖云组成,云厚大于5 km,暖云厚度大于2 km,冷云厚度大于3 km,0℃层高度位于3577~4004 m,云底温度为15. 4℃,云顶温度为-17℃。云内出现最强雷达回波达45 d BZ的对流雨核,人工增雨作业应在雷达回波强度不超过40d BZ,且4000 m以上雷达回波强度不超过30 d BZ积层混合云区实施增雨作业。嵌入对流核的积层混合云中,5000 m以上冷云中上层过冷水含量达0. 2 g·m-3,比稳定的层状云中过冷水含量提高2~4倍;丰富的过冷水从雨核发展初期维持到雨核发展盛期,且该高度层是冰晶重要增长区,温度在-15~-5℃之间,适合催化作业。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号