首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jinwon Kim 《Climatic change》2005,68(1-2):153-168
The effects of increased atmospheric CO2 on the frequency of extreme hydrologic events in the Western United States (WUS) for the 10-yr period of 2040–2049 are examined using dynamically downscaled regional climate change signals. For assessing the changes in the occurrence of hydrologic extremes, downscaled climate change signals in daily precipitation and runoff that are likely to indicate the occurrence of extreme events are examined. Downscaled climate change signals in the selected indicators suggest that the global warming induced by increased CO2 is likely to increase extreme hydrologic events in the WUS. The indicators for heavy precipitation events show largest increases in the mountainous regions of the northern California Coastal Range and the Sierra Nevada. Increased cold season precipitation and increased rainfall-portion of precipitation at the expense of snowfall in the projected warmer climate result in large increases in high runoff events in the Sierra Nevada river basins that are already prone to cold season flooding in todays climate. The projected changes in the hydrologic characteristics in the WUS are mainly associated with higher freezing levels in the warmer climate and increases in the cold season water vapor influx from the Pacific Ocean.  相似文献   

2.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   

3.
利用政府间气候变化专门委员会第四次评估报告(IPCCAR4)的15个耦合气候模式在不同排放情景下的模拟结果,对我国夏季降水及相关大气环流场的未来时空变化特征与模式之间的不确定性作了研究。结果表明,在全球变暖背景下,我国夏季降水表现出较强的局地特征。其中,我国东部和高原地区的降水在21世纪表现出明显的增加趋势,而且这种趋势随着变暖的加剧而增强,同时模式模拟结果之间的一致性也更好,表明这一结果的可信度较高。在全球变暖背景下,我国新疆南部地区表现为持续的降水减少趋势,而我国西南地区夏季降水的变化则呈现出先减少(21世纪初)后增加的特征,不同模式对降水这些局地特征的模拟也都表现出较好的一致性。其他地区夏季降水在21世纪的变化不大,同时模式模拟的一致性也较差。多模式模拟的我国未来百年夏季降水的这些变化特征在温室气体高、中、低不同排放情景下基本一致,A2情景预估结果变化最大,A1B次之,B1相对最小。东亚夏季大气环流场的预估结果显示,在全球变暖的背景下,大部分模式的模拟结果都表明,东亚夏季风环流有所增强,从而使得由低纬度大洋和南海地区向我国大陆的水汽输送增加,造成该地区大气含水量的增多,从而为我国东部地区夏季降水的增加提供有利条件。此外,随着全球变暖的加剧,西太平洋副热带高压持续增强,其变化对我国东部地区夏季降水的影响程度和范围也明显增大。这些环流场及其不确定性的分析结果进一步加强了我国夏季降水未来变化预估结果的可信度。  相似文献   

4.
California's primary hydrologic system, the San Francisco Estuary and its upstream watershed, is vulnerable to the regional hydrologic consequences of projected global climate change. Previous work has shown that a projected warming would result in a reduction of snowpack storage leading to higher winter and lower spring-summer streamflows and increased spring-summer salinities in the estuary. The present work shows that these hydrologic changes exhibit a strong dependence on elevation, with the greatest loss of snowpack volume in the 1300–2700 m elevation range. Exploiting hydrologic and estuarine modeling capabilities to trace water as it moves through the system reveals that the shift of water in mid-elevations of the Sacramento river basin from snowmelt to rainfall runoff is the dominant cause of projected changes in estuarine inflows and salinity. Additionally, although spring-summer losses of estuarine inflows are balanced by winter gains, the losses have a stronger influence on salinity since longer spring-summer residence times allow the inflow changes to accumulate in the estuary. The changes in inflows sourced in the Sacramento River basin in approximately the 1300–2200 m elevation range thereby lead to a net increase in estuarine salinity under the projected warming. Such changes would impact ecosystems throughout the watershed and threaten to contaminate much of California's freshwater supply.  相似文献   

5.
We present an analysis of climate change over Europe as simulated by a regional climate model (RCM) nested within time-slice atmospheric general circulation model (AGCM) experiments. Changes in mean and interannual variability are discussed for the 30-year period of 2071–2100 with respect to the present day period of 1961–1990 under forcing from the A2 and B2 IPCC emission scenarios. In both scenarios, the European region undergoes substantial warming in all seasons, in the range of 1–5.5°C, with the warming being 1–2°C lower in the B2 than in the A2 scenario. The spatial patterns of warming are similar in the two scenarios, with a maximum over eastern Europe in winter and over western and southern Europe in summer. The precipitation changes in the two scenarios also show similar spatial patterns. In winter, precipitation increases over most of Europe (except for the southern Mediterranean regions) due to increased storm activity and higher atmospheric water vapor loadings. In summer, a decrease in precipitation is found over most of western and southern Europe in response to a blocking-like anticyclonic circulation over the northeastern Atlantic which deflects summer storms northward. The precipitation changes in the intermediate seasons (spring and fall) are less pronounced than in winter and summer. Overall, the intensity of daily precipitation events predominantly increases, often also in regions where the mean precipitation decreases. Conversely the number of wet days decreases (leading to longer dry periods) except in the winter over western and central Europe. Cloudiness, snow cover and soil water content show predominant decreases, in many cases also in regions where precipitation increases. Interannual variability of both temperature and precipitation increases substantially in the summer and shows only small changes in the other seasons. A number of statistically significant regional trends are found throughout the scenario simulations, especially for temperature and for the A2 scenario. The results from the forcing AGCM simulations and the nested RCM simulations are generally consistent with each other at the broad scale. However, significant differences in the simulated surface climate changes are found between the two models in the summer, when local physics processes are more important. In addition, substantial fine scale detail in the RCM-produced change signal is found in response to local topographical and coastline features.  相似文献   

6.
To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (20 years) and three future(2040–2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper describes the regional simulations and focuses on the hydroclimate conditions in the Columbia River Basin (CRB) and Sacramento-San Joaquin River (SSJ) Basin. Results based on global and regional simulations show that by mid-century, the average regional warming of 1 to 2.5 °C strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack was about70% as indicated by the regional simulations. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation increased by 5 to 15 mm/day (15–20%) along theCascades and the Sierra. The warming resulted in increased rainfall at the expense of reduced snowfall, and reduced snow accumulation (or earlier snowmelt) during the cold season. In the CRB, these changes were accompanied by more frequent rain-on-snow events. Overall, they induced higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Changes in surface water and energy budgets in the CRB and SSJ basin were affected mainly by changes in surface temperature, which were statistically significant at the 0.95 confidence level. Changes in precipitation, while spatially incoherent, were not statistically significant except for the drying trend during summer. Because snow and runoff are highly sensitive tospatial distributions of temperature and precipitation, this study shows that (1) downscaling provides more realistic estimates of hydrologic impacts in mountainous regions such as the western U.S., and (2) despite relatively small changes in temperature and precipitation, changes in snowpack and runoff can be much larger on monthly to seasonal time scales because the effects of temperature and precipitation are integrated over time and space through various surface hydrological and land-atmosphere feedback processes. Although the results reported in this study were derived from an ensemble of regional climate simulations driven by a global climate model that displays low climate sensitivity compared with most other models, climate change was found to significantly affect water resources in the western U.S. by the mid twenty-first century.  相似文献   

7.
全球变暖形势下中国陆表水分的变化   总被引:1,自引:1,他引:0  
利用政府间气候变化委员会第四次评估报告(IPCCAR4)中的10个耦合模式CO:加倍试验和控制试验的模拟结果,分析了全球变暖背景下中国水分的变化。结果表明,随着全球变暖,东亚夏季风增强,冬季风减弱,使得冬夏季向中国区域输送的水汽都增强;中国区域降水,夏季除长江流域外基本都增加,冬季除华南外都增加。夏季降水蒸发差(P—E)除了在东北和南方增加外,从长江流域一直到西北有一带状减小带;冬季几乎所有模式的P—E表现为北方增加、南方减小。在全球变暖背景下,降水、蒸发和径流的综合结果以及积雪的作用使得土壤湿度在干旱区增加,且冬季干旱区土壤变湿的强度和范围大于夏季,然而在其他区域土壤湿度减少。上述结论是基于多模式集合平均结果,对未来气候的预估具有一定的参考价值,然而模式间存在较强差异性,仍具有较大不确定性。  相似文献   

8.
气候变化和水的最新科学认知   总被引:5,自引:0,他引:5       下载免费PDF全文
政府间气候变化专门委员会(IPCC)于2008年4月8日正式通过了"气候变化和水"技术报告。该报告建立在IPCC 3个工作组第四次评估报告的基础上,客观、全面而审慎地评估了与水有关的气候变化以及对水的过去、现在和未来的认知。最重要的进展是:过去几十年观测到全球变暖已经与大尺度水文循环的大规模变化联系在一起;气候模型对21世纪的模拟结果一致显示出降水在高纬和部分热带地区将增加,而在部分亚热带和中低纬地区将减少的结果;预计到21世纪中期,河流年平均径流和水量可能会因为高纬和部分湿润热带地区的气候变化而增加,而在中低纬和干旱热带将可能减少;许多地方降水强度和变率的增加将使洪旱危险性上升;预计冰雪储藏的水的补给将在本世纪减少;预计较高的水温和极端变化,包括洪旱等,将影响水质并加剧水污染;对全球而言,气候变化对淡水系统负面影响将超过收益;预计由于气候变化导致的水量-水质变化将影响食物的产量、稳定性、流通和利用;气候变化影响现有水的基础设施的功能和运行,包括水电、防洪、排水、灌溉系统,同时影响到水的管理;目前的水管理措施不足以应对气候变化的影响;气候变化挑战"过去水文上的经验能得到未来的情况"的传统说法;为保障平水和干旱情况所设计的适应选择,必须综合需水和供水双方的战略;减缓措施可以降低升温对全球水资源的影响程度,进而减低适应的需求;水资源管理明显地影响到很多其他政策领域。  相似文献   

9.
This paper addresses the ‘ice-free Arctic’ issue under the future global warming scenario. Four coupled climate models used in the third phase of the Coupled Model Intercomparison Project (CMIP3) were selected to project summer climate conditions over East Asia once the Arctic becomes ice-free. The models project that an ice-free Arctic summer will begin in the 2060s under the SRESA1B (according to IPCC Special Reports on Emissions Scenarios) simulations. Our results show that the East Asian summer monsoons will tend to be stronger and that the water vapor transport to central northern China will be strengthened, leading to increased summer precipitation in central northern China. The models also project an intensified Antarctic Oscillation, a condition which favors increased precipitation in South China’s Yangtze River Valley. The overall precipitation in Northwest China is projected to increase under ice-free Arctic summer conditions.  相似文献   

10.
M.Lal 《大气科学进展》1994,11(2):239-246
The global mean surface temperature may rise by about 0.3oC per decade during the next Few decades as a result of anthropogenic greenhouse gas emissions in the earth’s atmosphere. The data generated in the greenhouse warming simulations (Business-as-Usual scenario of IPCC) with the climate models developed at Max Planck Institute for Meteorology, Hamburg have been used to assess future plausible hydrological scenario for the South Asian region. The model results indicate enhanced surface warming (2.7oC for summer and 3.6oC for winter) over the land regions of South Asia during the next hundred years. While there is no significant change in the precipitation over most of the land regions during winter, substantial increase in precipitation is likely to occur during summer. As a result, an increase in soil moisture is likely over central India, Bangladesh and South China during summer but a statistically sig-nificant decline in soil moisture is expected over central China in winter. A moderate decrease in surface runoff may occur over large areas of central China during winter while the flood prone areas of NE-India. Bangladesh and South China are likely to have an increase in surface runoff during summer by the end of next century.  相似文献   

11.
使用区域气候模式RegCM4.4,对全球模式CSIRO-Mk3.6.0在RCP4.5情景下的气候变化试验结果(1950-2100年)在东亚地区进行25 km动力降尺度试验,比较了CSIRO-Mk3.6.0和RegCM4.4预估中国地区的21世纪气候变化。结果表明,两个模式预估未来中国地区气温持续升高,升温幅度具有区域性特征,RegCM4.4预估区域平均升温幅度低于CSIRO-Mk3.6.0,但二者年际波动基本一致。两个模式预估未来降水在中国西部以持续增加为主,东部则表现出较大的不一致性,预估区域平均年降水量变化不大,呈现冬季明显增加,夏季微弱减少的特点。此外,为了解区域气候模式对中国降水预估的不确定性,对本研究和以往RegCM3使用相同分辨率模拟得到的未来降水预估进行了对比,两个区域模式预估中国西部大部分地区未来降水一致性增加,东部存在明显不一致(冬季中、高纬除外)。  相似文献   

12.
利用区域气候模式与全球气候模式嵌套,模拟了近百年来植被及CO2浓度变化对东亚区域气候及水资源环境的影响.结果表明,东亚许多地区产生了升温现象,但这种温度变化在地域上具有不均匀性,内蒙古、东北及华北增暖最为显著,而四川北部一些地区却存在降温现象;近百年来植被及CO2浓度变化使东亚一些地区呈现出干旱化的趋势,尤其以淮河流域、山东半岛及云南地区最为明显,但长江、黄河中游地区、江南及台湾地区存在降水增加的趋势,从而使缺水的华北地区的干旱化进一步加剧,而黄河中上游地区的干旱化有所缓解,同时长江流域洪涝灾害的发生频率有增加趋势.  相似文献   

13.
近30a青藏高原气候与冰川变化中的两种特殊现象   总被引:21,自引:1,他引:20       下载免费PDF全文
近30 a全球强烈变暖,水循环加快,冰川也加剧退缩。青藏高原以其特殊的地理位置与下垫面,既对全球变暖有正常的反应,也出现了异常特殊现象。这种特殊现象已发现两处:1) 青藏高原北部偏西冰芯记录降温0.6℃,相应的冰川退缩微弱,融水径流降低;2) 青藏高原东南部以岗日嘎布山区为代表,出现较多的冰川前进,可能指示降水量有较大的增加。上述事实指示气候变化与冰川响应的复杂性。  相似文献   

14.
利用中国气象数据网提供的中国地面气候资料日值数据集(V3.0)中的降水数据以及ERA-Interim逐月再分析资料对全球变暖趋缓背景下(1998年后)辽宁夏季降水变化特征及水汽输送对其的影响进行研究。结果表明:全球增暖减缓背景下,辽宁夏季降水量存在一定的增加趋势,但趋势较弱,其中辽宁南部降水的增加趋势较其他地区显著,对辽宁整体降水变化的贡献程度相对较高。辽宁南北边界的夏季水汽通量与降水量呈现高度的正相关性。其中,南边界的相关性程度最显著。辽宁上空纬向水汽净输入量对降水的贡献较小,经向水汽通量对于降水的贡献较纬向高且其高值区主要位于辽宁东部及南部地区的对流层低层,对当地降水存在影响。辽宁南部对流层整层的经向水汽通量与辽宁降水量存在显著正相关,通过分析大气环流背景场的变化对辽宁经向水汽输送的影响分析,西太平洋副热带高压脊线的逐渐北移是造成辽宁经向水汽通量增加的重要因素,从而直接影响辽宁降水量的变化趋势,导致辽宁夏季降水在全球变暖减缓背景下存在一定的增加趋势。  相似文献   

15.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations.  相似文献   

16.
Observed and projected climate change in Taiwan   总被引:1,自引:0,他引:1  
Summary This study examined the secular climate change characteristics in Taiwan over the past 100 years and the relationship with the global climate change. Estimates for the likelihood of future climate changes in Taiwan were made based on the projection from the IPCC climate models. In the past 100 years, Taiwan experienced an island-wide warming trend (1.0–1.4 °C/100 years). Both the annual and daily temperature ranges have also increased. The warming in Taiwan is closely connected to a large-scale circulation and SAT fluctuations, such as the “cool ocean warm land” phenomenon. The water vapor pressure has increased significantly and could have resulted in a larger temperature increase in summer. The probability for the occurrence of high temperatures has increased and the result suggests that both the mean and variance in the SAT in Taiwan have changed significantly since the beginning of the 20th century. Although, as a whole, the precipitation in Taiwan has shown a tendency to increase in northern Taiwan and to decrease in southern Taiwan in the past 100 years, it exhibits a more complicated spatial pattern. The changes occur mainly in either the dry or rainy season and result in an enhanced seasonal cycle. The changes in temperature and precipitation are consistent with the weakening of the East Asian monsoon. Under consideration of both the warming effect from greenhouse gases and the cooling effect from aerosols, all projections from climate models indicated a warmer climate near Taiwan in the future. The projected increase in the area-mean temperature near Taiwan ranged from 0.9–2.7 °C relative to the 1961–1990 averaged temperature, when the CO2 concentration increased to 1.9 times the 1961–1990 level. These simulated temperature increases were statistically significant and can be attributed to the radiative forcing associated with the increased concentration of greenhouse gases and aerosols. The projected changes in precipitation were within the range of natural variability for all five models. There is no evidence supporting the possibility of precipitation changes near Taiwan based on the simulations from five IPCC climate models. Received February 5, 2001 Revised July 30, 2001  相似文献   

17.
全球变暖影响着以流域径流要素为主导的水文水资源系统的变化。长江流域未来水资源量的时空分布对长江大保护与长江经济带的发展意义重大。为探究全球升温1.5℃和2.0℃对长江流域径流变化的影响,使用基于偏差校正的气候模式集合数据驱动两参数月水量平衡模型,比较两种升温情景下径流量的响应差异。结果表明:基于偏差校正的气候模式集合数据可以较好地代表长江流域历史时期(1976—2005年)的年平均降水和年平均蒸散发情势。两参数月水量平衡模型与参数区域化方法相结合能较好地模拟长江流域各子流域的月径流量。升温1.5℃时,无论是年径流量还是季节径流量均呈上升趋势,与历史时期相比,50%以上三级子流域的增幅超过5%;升温2.0℃时,增幅超过8%。这表明升温2.0℃情景下长江流域水资源量将进一步增加。相对于历史时期,升温1.5℃与2.0℃情景下长江流域北部降水量增幅较大;径流量增幅分布格局基本与降水量一致。汉江流域是全流域径流量增幅最显著的区域。  相似文献   

18.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

19.
An analysis of simulated future surface climate change over the southern half of Korean Peninsula using a RegCM3-based high-resolution one-way double-nested system is presented. Changes in mean climate as well as the frequency and intensity of extreme climate events are discussed for the 30-year-period of 2021–2050 with respect to the reference period of 1971–2000 based on the IPCC SRES B2 emission scenario. Warming in the range of 1–4°C is found throughout the analysis region and in all seasons. The warming is maximum in the higher latitudes of the South Korean Peninsula and in the cold season. A large reduction in snow depth is projected in response to the increase of winter minimum temperature induced by the greenhouse warming. The change in precipitation shows a distinct seasonal variation and a substantial regional variability. In particular, we find a large increase of wintertime precipitation over Korea, especially in the upslope side of major mountain systems. Summer precipitation increases over the northern part of South Korea and decreases over the southern regions, indicating regional diversity. The precipitation change also shows marked intraseasonal variations throughout the monsoon season. The temperature change shows a positive trend throughout 2021–2050 while the precipitation change is characterized by pronounced interdecadal variations. The PDF of the daily temperature is shifted towards higher values and is somewhat narrower in the scenario run than the reference one. The number of frost days decreases markedly and the number of hot days increases. The regional distribution of heavy precipitation (over 80 mm/day) changes considerably, indicating changes in flood vulnerable regions. The climate change signal shows pronounced fine scale signal over Korea, indicating the need of high-resolution climate simulations  相似文献   

20.
包庆  Bin WANG  刘屹岷 《大气科学》2008,32(5):997-1005
20世纪50年代以来,随着全球海表面温度年代际变化和全球变暖现象的出现,东亚夏季风降水和环流场也出现相应的年代际变化。是什么原因引起这个长期的变化趋势?研究表明青藏高原增暖可能是导致东亚夏季风年代际变化的重要因子之一。为了能够更好地理解青藏高原地表状况对下游东亚季风的影响,作者使用德国马普气象研究所大气环流模式(ECHAM)进行一系列数值试验。在两组敏感性试验中,通过改变高原上的地表反照率从而达到改变地表温度的目的。数值试验结果表明:青藏高原增暖有助于增强对流层上层的南亚高压、高原北侧西风急流和高原南侧东风急流以及印度低空西南季风;与此同时,东亚地区低层西南气流水汽输送增强。高原增暖后降水场的变化表现为:印度西北部季风降水增加,长江中下游以及朝鲜半岛梅雨降水增多;在太平洋副热带高压控制下的西北太平洋地区和孟加拉湾东北部,季风降水减少。对数值模拟结果的初步诊断分析表明:在感热加热和对流引起的潜热加热相互作用下,南亚高压强度加强,东亚夏季低层西南季风增大、梅雨锋降水增强,高原东部对流层上层的副热带气旋性环流增加,以及对流层低层的西太平洋副热带高压增强。另外,在青藏高原增暖的背景下,孟加拉湾地区季风降水减弱。本项研究有助于更好地理解东亚夏季风年代际变化特征和未来气候变化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号