首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ball milling is an energy-intensive unit operation and usually consumes a major proportion of the power drawn by a typical mineral processing plant. Hence, substantial economic benefits can be achieved by optimal design and by operating ball milling circuits under optimum process conditions. This requires an accurate ball mill modelling technique.In the multi-segment ball mill model, the size-dependent material transport within the mill varies systematically with the amount of coarse particles present in each segment. The ore-specific breakage distribution function can be determined from single particle breakage tests conducted using a computer-monitored twin pendulum apparatus. When the ore-specific breakage distribution function is used in the multi-segment, a constant relationship between the breakage rate parameters and mill diameter is observed. Thus, the performance of an industrial ball mill can be adequately described using the ore-specific breakage distribution function together with the systematic variation of the material transport and the breakage rate functions with process conditions and mill diameter, respectively.This ball mill modelling technique is illustrated using a case study on the design of a ball milling circuit for a particular grinding requirement and another case study on modelling the performance of an industrial ball milling circuit.  相似文献   

2.
Column flotation, which is a very effective process in mineral processing especially for easily floatable minerals, is one of the most important new developments to emerge in mineral processing technology in the last years. In this study, the flotation behavior of talc products having different particle shapes produced by different grinding mills (ball and rod mill) was determined by using column flotation process. Shape characteristics of the particles were investigated by the two dimensional measuring technique based on the particle projections obtained from the SEM microphotographs using a COREL Draw 10.0 program. The results showed that particles possessing higher elongation and flatness properties were recovered better during column flotation, whilst roundness and relative width had a negative effect on the flotation behavior of the talc mineral studied. Consequently, as the shape of the particles produced by the mill deviated from the ideal sphere, their floatability was increased.  相似文献   

3.
A detailed comparison is made of the capability of population balance models to predict steady-state product size distributions of a pilot-scale ball mill. The mill was operated at 60% solids with feed rates of crystalline limestone ranging from 90 to 450 kg/hr (200 to 1000 lb/hr). Two types of lumped parameter models are compared: a linear model in which size reduction parameters are independent of size consist and a nonlinear model in which these parameters are dependent on size consist. The nonlinear model is based on an empirical correlation between rate of breakage and size consist in the mill. Results indicate that the nonlinear model gives the most accurate predictions of product size distributions, however, at the cost of significantly more complex computations.  相似文献   

4.
富钴结壳超细标准物质的加工制备   总被引:3,自引:2,他引:1  
用气流磨制备了2个具有超细粒度的海山富钴结壳标准物质MCPt-1和MCPt-2。原样先经球磨成74μm(-200目),再用气流磨进行超细加工。样品粒度采用激光粒度仪检测,用粒度分布图和特征粒度来表达测量结果。两个样品的平均粒度分别为1.8μm和1.5μm(约2 000目),是目前粒度最小的标准物质。文章介绍了用于超细加工的流化床式气流磨原理与方法,展示了样品加工后的粒度分析结果,对比了国内外超细标准物质的概况。最后讨论了当前关注样品加工的重要性、超细加工的问题及超细样品分析研究的意义。  相似文献   

5.
The Mississippi Valley-type Pb-Zn deposits of the Pine Point district (Northwest Territories, Canada) are located close to the eastern edge of the present day Western Canadian Sedimentary Basin. The deposits are thought to have formed as the result of basin-wide fluid flow in the Presqu’ile Barrier, the host to the ore deposits. A laser ablation multi-collector inductively coupled plasma mass spectrometric study of 87Sr/86Sr ratios of ore-related dolomites from the N81 deposit at Pine Point indicates that at least two sources of Sr were present in the mineralizing system. One fluid has a range in Sr isotopic values from 0.07073 to 0.71200 and is interpreted to be derived from Middle Devonian seawater that interacted with clastic units in the basin. The second fluid has higher Sr isotopic values (up to 0.71520), similar to those found in some Canadian Shield brines, and is interpreted to represent an evaporated seawater-derived brine which has interacted with crystalline basement rocks. Reactivation of old structures in the basement may have provided a pathway for cross-formation fluid flow to the site of mineralization. The data suggest that the stratigraphic location of the Pine Point District, near the interface between the Western Canadian Sedimentary Basin and its basement, may have exerted a fundamental control on the formation of these deposits.  相似文献   

6.
《Applied Geochemistry》2006,21(2):269-288
Reliable quantification of mineral weathering rates is a key to assess many environmental problems. In this study, the authors address the applicability of pure mineral laboratory rate laws for dissolution of mill tailings samples. Mass-normalised sulfide and aluminosilicate mineral dissolution rates, determined in oxygenated batch experiments, were found to be different between two samples from the same ∼50-year-old, carbonate-depleted mill tailings deposit. Consideration of difference in particle surface area and mineralogy between the samples resolved most of this discrepancy in rates. While the mineral surface area normalised dissolution rates of pyrite in a freshly crushed pure pyrite specimen and a sulfide concentrate derived from the tailings were within the range of abiotic literature rates of oxidation by dissolved molecular O2, as were rates of sphalerite and chalcopyrite dissolution in the tailings, dissolution rates of pyrite and aluminosilicates in the tailings generally differed from literature values. This discrepancy, obtained using a consistent experimental method and scale, is suggested to be related to difficulties in quantifying individual mineral reactive surface area in a mixture of minerals of greatly varying particle size, possibly due to factors such as dependence of surface area-normalised mineral dissolution rates on particle size and time, or to non-proportionality between rates and BET surface area.  相似文献   

7.
The results of experiments on a 40 cm × 40 cm grate-discharge ball mill have been analysed for variation of mill hold-up weight of solids with solids feed rate, weight percent solids, mean feed particle size, material specific gravity and work-index. It is shown that mill hold-up weight is independent of the material specific gravity and mean feed particle size, and it varies linearly with solids feed rate and weight percent solids, at least over the range of practical interest. The variations in the transport behaviour of different materials have been attributed to the differences in the size distribution of the mill hold-up solids. It is shown that work-index can be used as the material characteristic for the development of an empirical correlation. Variation of mean residence time of solids with solids feed rate and weight-percent solids is also discussed.  相似文献   

8.
The main objective of this experimental study was to investigate the evolution of the mineral liberation characteristics of an ore undergoing grinding. Six samples of an iron ore containing hematite, magnetite and quartz have been tested. Mineral grade and liberation measurements have been performed with an image analyser on polished sections of particles from several discrete size intervals.For each product, the grade in iron oxides was increasing greatly with the fineness of the particles. Moreover, in each size interval down to 270 mesh, it was slightly decreasing as grinding proceeded. These behaviors are due to the fact that iron oxides were ground more easily than the siliceous gangue. The degree of liberation of the valuable minerals was evidently increasing with the particle fineness. Moreover, for each size interval coarser than 48 mesh, it has also shown a slight decrease with grinding. For finer sizes however, it appeared in practice invariant and independent of the grade or of the degree of grinding. These observations are of interest when considering that the grinding products tested were very different in fineness while corresponding to various modes of fragmentation.(jaw crushing, roll crushing and ball milling) and to an ore with a high tendency to break along the mineral grain boundaries.  相似文献   

9.
10.
A centrifugal mill is a high-power intensity media mill that can be used for ultra-fine grinding, employing centrifugal forces generated by gyration of the axis of the mill tube in a circle. The mill charge motion is quite different depending on the ratio of the gyration diameter to the mill diameter (G / D ratio), varying from a motion similar to that of a conventional tumbling media mill to that of a vibration mill. In this study, a centrifugal mill was constructed with an arrangement where the gyration diameter could be readily adjusted. The batch grinding characteristics of three different minerals (limestone, talc and illite) in water with dispersing agent were investigated at various G / D ratios. It was found that the optimum G / D ratio in terms of the specific energy consumption to give a desired fineness of product was different for the three minerals. This was due to their different reactions to the breakage mechanisms provided by the mill charge motion at varying G / D ratios. The size distributions became progressively narrower at increased grinding times, and particles finer than about 0.1 μm were not detected even for prolonged grinding times. Measurement of specific surface areas indicated that this was not due to an artifact of the size measurements by laser diffractometry. This implies that there is a limitation in which particles finer than 0.1 μm are not produced under the conditions tested in this type of mill, but further investigation is needed for experimental verification of this limit of comminution.  相似文献   

11.
月表光度行为描述了月表物质反射的太阳光随入射、出射和太阳相角的变化,其反射率的不同取决于月壤颗粒大小、粒子形状、透明度、孔隙度、表面粗糙度等因素。为了分析月表光度行为,了解区域反射率差异原因,本文以Apollo16登月区为例,使用M3(moon mineralogy mapper)数据反演Hapke模型物理参数,并分析了Hapke模型光度参数对二向性反射率的影响程度。反演结果显示,本文研究区域光度参数bhS变化很小,光度参数w有一定的变化;表明本文研究区域反射率不同主要是w的差异造成的。研究区域月壤中各类矿物颗粒的前向散射占主导地位,月壤结构和粒径总体相近,但在孔隙度、风化层填充物状态及表面粗糙度等因素中至少有一种因素存在差异。  相似文献   

12.
Suspended particle samples from the Yellow River estuary were sorted into five grain size fractions to explore the effect of grain size distribution on organic matter content and composition. The n-alkanes and PAHs were determined for each size fraction. PAHs and n-alkanes were more abundant in the finer fractions and the loading decreases steadily with increasing of grain size. However, the total n-alkanes or PAHs normalized to organic C were lower in the smaller size fractions than those in the larger size fractions, suggesting n-alkanes or PAHs may be diluted by the addition of organic matter or gradually decreased by degradation in the smaller size fractions. The particulate n-alkanes in the Yellow River estuary consist of a mixture of compounds from terrigenous and riverine biogenic n-alkanes and more biogenic n-alkanes accumulate in finer particles. Particulate PAHs are related to combustion/pyrolysis processes of coal/wood, and the relative contribution of petrogenic PAHs increase with increasing grain size. The total particulate n-alkane and PAH discharges passing the Lijin Station are about 3.94 t d−1 and 0.52 t d−1, respectively. Fine particles (<32 μm) play a significant role in organic matter transfer.  相似文献   

13.
The performance of the secondary ball mill at the New Broken Hill Consolidated Ltd. concentrator is analysed using the perfect mixing model and an ore-specific breakage distribution function. This function was determined from single-particle breakage tests using a computer-monitored twin pendulum apparatus.The ratio of the breakage rate to the normalized discharge rate, r/d*, determined for the ball mill using the ore-specific breakage distribution function for a range of grinding conditions is related to the mill power consumption. The mill power consumption is related to the percentage of mill volume occupied by the ball charge and to the percentage of solids in the mill feed.  相似文献   

14.
《Chemical Geology》2007,236(1-2):167-179
Unusual mineral structures have recently been found in a sandstone-hosted roll-type uranium deposit in the Middle Jurassic Zhiluo Formation in the Shashagetai deposit, the northern Ordos basin, NW China. The structures possess a chemical composition and crystal structure characteristic of mineral coffinite [(USiO4)1−x(OH)4x], which occurs as nanoparticles with size ranging from 5 to 25 nm. These structures are interpreted to be fossilized microorganisms, based on mineralogical biosignatures including morphology, size, occurrence of biogenic coffinite as nano-crystals, and biological elements such as P. The intimate intergrowth of coffinite with secondary pyrite of bacterial origin, as defined by low δ34S values, and calcite cements with petroleum-derived carbon supports its biogenic origin. Oil inclusions in the host sandstone are characterized by abundant n-alkanes, slightly increased Pr/nC17 and Ph/nC18 ratios, significant amounts of demethylated hopanes and tricyclic terpanes, and the existence of unresolved complex mixtures. These characteristics are interpreted to be a result of mixing of an earlier, heavily degraded oil with a later charged fresh oil; subsequently the oils were slightly degraded. These lines of evidence lead to the proposal that the reduction of sulfate and oxidization of petroleum are likely synchronous with reduction of hexavalent [U(VI)] to tetravalent [U(IV)] uranium by sulfate-reducing bacteria (SRB). The discovery of a natural association of microorganism-like structures, a uranium mineral, and biodegraded petroleum has implications for uranium biomineralization and fossil fuel exploration.  相似文献   

15.
Cascadography is a generic, laboratory, instrumentational method of separating and characterizing mixes of mineral or particle species based on subtle physical and physiochemical differences. Like gas chromatography, cascadography characterizes a sample by the temporal separation of mineral species. Using a number of identical unit operations in series, the sample feed is injected into the first unit operation at time equals zero, and samples are taken at regular intervals from the last cell product. From the n-th cell, the product becomes the feed to the (n+1)th cell. Other than as a product, no material is removed from any cell—there is no circulating load or feedback. First to appear in the product are the rapidly moving particles followed by the more slowly moving particles. For example, if there exists a number of identical particles, then the particles will appear together in the output of the system. As the number of cells in series increases, so does the resolution between batches of particles with similar properties. If the system being studied is flotation, pure mineral species as well as locked particle assays can be made of the feed and waste streams, and from this information, the flotation cell selection function can be calculated.  相似文献   

16.
The reduction of uranium(VI) by Shewanella oneidensis MR-1 was studied to examine the effects of bioreduction kinetics and background electrolyte on the physical properties and reactivity to re-oxidation of the biogenic uraninite, UO2(s). Bioreduction experiments were conducted with uranyl acetate as the electron acceptor and sodium lactate as the electron donor under resting cell conditions in a 30 mM NaHCO3 buffer, and in a PIPES-buffered artificial groundwater (PBAGW). MR-1 was cultured in batch mode in a defined minimal medium with a specified air-to-medium volume ratio such that electron acceptor (O2) limiting conditions were reached just when cells were harvested for subsequent experiments. The rate of U(VI) bioreduction was manipulated by varying the cell density and the incubation temperature (1.0 × 108 cell ml−1 at 20 °C or 2.0 × 108 cell ml−1 at 37 °C) to generate U(IV) solids at “fast” and “slow” rates in the two different buffers. The presence of Ca in PBAGW buffer altered U(VI) speciation and solubility, and significantly decreased U(VI) bioreduction kinetics. High resolution transmission electron microscopy was used to measure uraninite particle size distributions produced under the four different conditions. The most common primary particle size was 2.9-3.0 nm regardless of U(VI) bioreduction rate or background electrolyte. Extended X-ray absorption fine-structure spectroscopy was also used to estimate uraninite particle size and was consistent with TEM results. The reactivity of the biogenic uraninite products with dissolved oxygen was tested, and neither U(VI) bioreduction rate nor background electrolyte had any statistical effect on oxidation rates. With MR-1, uraninite particle size was not controlled by the bioreduction rate of U(VI) or the background electrolyte. These results for MR-1, where U(VI) bioreduction rate had no discernible effect on uraninite particle size or oxidation rate, contrast with our recent research with Shewanella putrefaciens CN32, where U(VI) bioreduction rate strongly influenced both uraninite particle size and oxidation rate. These two studies with Shewanella species can be viewed as consistent if one assumes that particle size controls oxidation rates, so the similar uraninite particle sizes produced by MR-1 regardless of U(VI) bioreduction rate would result in similar oxidation rates. Factors that might explain why U(VI) bioreduction rate was an important control on uraninite particle size for CN32 but not for MR-1 are discussed.  相似文献   

17.
It is generally agreed that particle size distributions of sediments tend ideally to approximate the form of the lognormal probability law, but there is no single widely accepted explanation of how sedimentary processes generate the form of this law. Conceptually, and in its simplest form, sediment genesis involves the transformation of a parent rock mass into a particulate end product by processes that include size reduction and selection during weathering, transportation, and deposition. The many variables that operate simultaneously during this transformation can be shown to produce a distribution of particle sizes that approaches asymptotically the lognormal form when the effect of the variables is multiplicative. This was first shown by Kolmogorov (1941). Currently available models combine breakage and selection in differing degrees, but are similar in treating the processes as having multiplicative effects on particle sizes. The present paper, based on careful specification of the initial state, the nth breakage rule and the nth selection rule, leads to two stochastic models for particle breakage, and for both models the probability distributions of particle sizes are obtained. No attempt is made to apply these models to real world sedimentary processes, although this topic is touched upon in the closing remarks.  相似文献   

18.
In the present study, forward radiative transfer simulations are carried out for the tropical cyclone Fanoos that hit the coast off south India in December 2005. The in-house radiative transfer package used for this study employs the doubling and adding method to calculate radiances leaving the top of the one dimensional precipitating atmosphere. The particle drop size distribution is assumed to follow a modified gamma distribution in respect of the cloud liquid water and cloud ice water content. For precipitation, the Marshall-Palmer particle size distribution is used. All the hydrometeor particles are assumed to be spherical and Lorentz Mie theory is used to evaluate the interaction parameters like absorption, scattering coefficients and polarized scattering matrix. In order to validate the drop size distributions and interaction parameter calculations, the simulated brightness temperatures are compared with the TMI measured brightness temperatures for all the channels. For carrying out this exercise, vertical hydrometeors retrieved by TMI are used as input. The differences between simulated and measured brightness temperatures are found to be within ±10%. The maximum difference in the brightness temperatures between the present work and the Eddington model which the TRMM algorithm employs is about 4.5K. This may become significant when retrieval of precipitation is attempted by combining the forward model with a suitable retrieval strategy, under tropical conditions.  相似文献   

19.
Sampling of quartz vein material from two gold deposits of similar geological setting but different ages (The Ovens, 408?Ma; Dufferin, 380?Ma) in the Meguma Terrane of Nova Scotia has been done to compare and contrast their ??18Oquartz signatures. Despite different ages of formation, quartz from all vein types in each of the deposits (i.e. saddle-reef, bedding-concordant leg reefs, en echelon, discordant) shows limited intra-deposit variation with similar average ??18O values of +15.2?±?0.9?? (n?=?16) for The Ovens and +15.7?±?0.6?? (n?=?12) for Dufferin. Using an average ??18O value of +15.4?? for the two deposits, the corresponding ??18OH2O values, calculated for 400°C and 350°C based on constraints from mineral assemblages and fluid inclusion studies, indicate averages of 11.4?±?0.2?? and +10.2?±?0.2??, respectively. The isotopic data indicate that: (1) the vein-forming fluids have a metamorphic signature, (2) all vein types in the two deposits represent formation from a single, isotopically homogeneous fluid, and (3) a fluid of similar isotopic signature was generated by two contrasting tectono-thermal events in the Meguma Terrane that were separated by 30?Ma. Integration of these results with previously published data for 14 Meguma gold deposits indicate a general stratigaphic dependence in ??18OH2O values for deposits when arranged in their relative stratigraphic position such that ??18OH2O values increase upwards in the stratigraphy. This apparent trend cannot be explained by models involving either fluid mixing or cooling of the vein-forming fluids, but instead is modelled using fluid/rock interaction taking into account a change in the modal mineralogy of the metasedimentary rocks upwards in the stratigraphy.  相似文献   

20.
Grain-to-grain and stylolitic solution structures in two central Appalachian Siluro–Devonian limestone macroscale folds contain one of four distinct mineral assemblages that are characterized by the dominant iron-phase mineral present: (1) chlorite±illite±pyrite±calcite±quartz±TiO2±goethite, (2) chlorite±illite±pyrite altered to iron oxide/hydroxide±calcite ±quartz±TiO2, (3) chlorite±illite±magnetite±calcite±quartz, and (4) chlorite±illite±goethite±calcite±quartz±TiO2. Optical reflectance microscopy and SEM–EDS was used to characterize the mineralogy and mineral morphology of these structures. Geochemical modeling was used to constrain the conditions of formation and preservation.The primary control on solution structure mineral assemblage was the redox conditions present in the solution structures during burial and deformation. The redox conditions on the microscale may have been controlled by the local fluid chemistry and the presence–absence of hydrocarbons and organic acids within the formation fluids, and the influx of externally derived fluids by fracture formation during the folding process. The wide variation in mineralogy of the solution structures shows that they were ‘chemical factories’ where a variety of chemical reactions took place during rock dissolution. In particular, the formation of authigenic magnetite in solution structures has significant implications for paleomagnetic applications, and use of anisotropy of anhysteretic remanent magnetization and anisotropy of magnetic susceptibility fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号