首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以GRACE卫星为例,分析比较利用SLR观测资料进行卫星定轨时,采用不同重力场模型对GRACE卫星定轨精度的影响;以及重力场截断阶引起的积分轨道差异;同时,将定轨结果与采用GPS确定的定轨结果进行比较,分析与GPS定轨结果的差异.实验证明.重力场模型选择GGM02C的定轨结果优于选择JGM-3的定轨结果,基于SLR的定...  相似文献   

2.
以GRACE卫星为例,分析比较利用SLR观测资料进行卫星定轨时,采用不同大气密度模型对GRACE卫星定轨精度的影响;将定轨结果与采用GPS的定轨结果进行比较,分析与GPS定轨结果的差异。实验证明,大气密度模型的选择对定轨结果的影响很明显,同时,比较了基于SLR的定轨结果与采用GPS的定轨结果,发现大气密度模型采用DTM的情况与采用GPS的轨道差异最小,差异的量级为米级。  相似文献   

3.
益鹏举  赵春梅  郑作亚 《测绘科学》2011,36(3):32-33,39
本文基于卫星精密定轨的基本理论,研究了GRACE卫星非差简化动力学定轨的方法;并用自行研制的定轨软件CASMORD对实测的星载GPS数据进行非差数据的简化动力学定轨,通过比较GRACE卫星解算的轨道与JPL事后轨道及SLR测距信息,结果表明:利用非差观测值进行CRACE卫星的简化动力学定轨,三维位置精度(3D-RMS)...  相似文献   

4.
采用星载GPS双频观测数据,低轨卫星定轨的精度可以达到厘米级。采用GRACE A卫星的星载GPS观测数据,分别基于单频数据(C/A和L1)的半合组合观测量和双频数据的消电离层组合观测量,采用动力学低轨卫星定轨方法,解算了7d的GRACE A卫星轨道,解算结果与德国地学中心发布的快速科学轨道进行对比分析,并通过卫星激光测距观测数据进行检核。结果表明,通过半合组合观测量定轨得到的结果,在径向R、切向T、法向N方向的均方根误差平均值分别为7.9cm、20.1cm和5.5cm,三维定轨精度平均为22.8cm,利用卫星激光测距数据进行检核,残差平均值为-1.8cm,均方根误差为8.6cm。证明了采用单频观测数据进行定轨的可行性,并且定轨精度可以达到一般低轨卫星定轨精度的要求。  相似文献   

5.
针对GPS卫星精密轨道和钟差插值对GRACE卫星定轨精度影响进行了分析,分别使用IGS(International GNSS Service)30 s间隔钟差、CODE(the Center for Orbit Determination in Europe)30和5 s间隔钟差以及15 min精密星历进行GRACE卫星定轨实验。结果表明:GPS轨道插值精度可以达到cm级,将15 min GPS轨道插值为30 s间隔利用9阶拉格朗日插值定轨结果精度最高,继续增加阶数定轨精度不会增加;利用CODE钟差计算GRACE非差运动学轨道,码伪距结果精度较IGS产品提高6%,载波相位运动学定轨结果和约化动力学定轨结果精度都提高10%左右;5 s间隔卫星钟数据对定轨结果改进并不明显。采用CODE间隔为30 s钟差进行GRACE运动学定轨的计算精度能满足cm级轨道的应用需求。  相似文献   

6.
非线性自适应抗差滤波定轨算法   总被引:2,自引:1,他引:1  
讨论了应用卡尔曼滤波进行卫星精密定轨所遇到的一些问题,提出了一种新的非线性自适应抗差滤波定轨算法.该方法首先采用非线性滤波来提高定轨精度,避免了模型线性化误差的影响.另外,采用双因子方差膨胀模型来自适应地调节观测噪声的协方差阵,以控制观测异常对定轨结果的影响;通过自适应因子实时调节状态噪声协方差阵,以降低状态异常对定轨结果的影响.通过CHAMP卫星定轨计算,验证了新方法的可行性和有效性.  相似文献   

7.
LEO星载GPS双向滤波定轨研究   总被引:1,自引:1,他引:0  
介绍了目前常用的LEO(low Earth orbiter)星载GPS定轨方法,分析了LEO星载GPS双向滤波定轨方法与其他几种主要定轨方法的区别.从卫星运动方程和星载GPS非差定轨观测方程出发,给出了LEO星载GPS双向滤波定轨方法的原理,采用自行研制的定轨软件对两颗GRACE(gravity recovery and climate ex-periment)卫星进行了定轨试验,通过与JPL(Jet Propulsion Laboratory)轨道的对比及KBR(k-band rangingsystem)观测数据的外部检核发现:①双向滤波定轨技术不仅能显著提高单向滤波开始阶段的定轨精度,而且可以从整体上提高卫星的定轨精度;②LEO星载GPS双向滤波定轨方法切实可行,相应的星载GPS定轨软件对GRACE卫星定轨精度在径向、沿轨方向和法向优于5 cm.  相似文献   

8.
执行各种低轨卫星任务的官方在公布定轨结果的同时并没有公布星载接收机的天线相位中心校正(PCV)信息,而PCV误差是星载GNSS精密定轨必须考虑的主要误差源之一。以GRACE卫星任务为例研究PCV误差对低轨卫星精密定轨的影响,利用GPS观测数据直接估计与相位误差有关的天线相位偏差(PCO)和PCV参数,然后利用K波段测距系统和卫星激光测距仪数据进行定轨评定。  相似文献   

9.
基于星间测距的自主定轨必然存在星座的整体旋转和漂移,即存在星座空间基准的衰减问题,因此,卫星星座的空间基准维持是自主定轨的主要目标,也是自主定轨的核心问题之一。重点讨论卫星自主定轨中的空间基准维持方法,系统分析星地观测、星间/星地组合观测和星间观测3种观测模式下的卫星轨道参数估计方法,及其对应的空间基准维持方式;提出卫星自主定轨强基准和弱基准概念。强基准是指在星地观测或星间/星地组合观测条件下,强化地面高精度基准站坐标的定轨方式,此时卫星星座基准与地面跟踪站基准一致;弱基准是指在仅有星间链路观测条件下,采用卫星轨道信息先验弱约束的定轨方式,即弱基准是以先验轨道所对应的卫星星座的几何重心建立的。强基准充分利用了星间、星地观测网中的各类信息,计算结果可靠且精度稳定,而弱基准虽然缺少地面观测信息,但先验卫星轨道同样是基于地面跟踪网精密定轨得到的,对卫星空间基准的维持同样可靠,且定轨计算更为简单。采用北斗试验星实测数据,分别开展无基准、弱基准和强基准支持下的自主定轨试验,试验结果表明,弱基准中仅对卫星轨道倾角和升交点赤经进行先验弱约束即可抵偿卫星星座的旋转和漂移,但定轨精度略低于强基准支持下的定轨精度。在无地面跟踪系统支持的特定环境下,建议采用弱基准方法,实现真正意义上的自主定轨。  相似文献   

10.
针对GPS卫星钟差及观测数据间隔对LEO卫星运动学和约化动力学定轨的影响问题进行了分析,并使用CODE(the Center for Orbit Determination in Europe)30 s、5 s间隔GPS卫星钟差分别进行了30 s和10 s间隔观测数据的LEO卫星定轨实验。结果表明,使用5 s间隔卫星钟差(10 s间隔观测数据)相比30 s间隔卫星钟差(30 s间隔观测数据)进行GRACE卫星精密定轨,约化动力学定轨精度提高了16%,运动学定轨精度提高了8.8%;使用30 s间隔卫星钟差和10 s间隔观测数据的定轨精度最低;对于30 s间隔观测数据,使用30 s或5 s间隔卫星钟差的定轨精度基本一致。  相似文献   

11.
Precise orbit determination for the GRACE mission using only GPS data   总被引:1,自引:1,他引:1  
The GRACE (gravity recovery and climate experiment) satellites, launched in March 2002, are each equipped with a BlackJack GPS onboard receiver for precise orbit determination and gravity field recovery. Since launch, there have been significant improvements in the background force models used for satellite orbit determination, most notably the model for the geopotential. This has resulted in significant improvements to orbit accuracy for very low altitude satellites. The purpose of this paper is to investigate how well the orbits of the GRACE satellites (about 470 km in altitude) can currently be determined using only GPS data and based on the current models and methods. The orbit accuracy is assessed using a number of tests, which include analysis of orbit fits, orbit overlaps, orbit connecting points, satellite Laser ranging residuals and K-band ranging (KBR) residuals. We show that 1-cm radial orbit accuracy for the GRACE satellites has probably been achieved. These precise GRACE orbits can be used for such purposes as improving gravity recovery from the GRACE KBR data and for atmospheric profiling, and they demonstrate the quality of the background force models being used.  相似文献   

12.
王跃  张德志  张帆 《北京测绘》2020,(4):556-560
利用GRACE和SWARM重力卫星星载GPS观测数据,基于简化动力学方法进行精密定轨,通过相位观测值残差分析、重叠轨道对比和科学轨道对比进行轨道精度检核。GRACE和SWARM卫星相位观测值残差RMS值稳定在6 mm左右,重叠轨道对比差值RMS在径向、切向和法向均优于1.24 cm;通过与GFZ和ESA提供的GRACE卫星与SWARM卫星精密轨道对比,GRACE卫星简化动力学轨道在R,T,N方向的轨道精度分别达到1.3 cm、2.1 cm和1.3 cm;SWARM卫星简化动力学轨道在径向、切向和法向的轨道精度分别达到0.8 cm、1.3 cm和1.6 cm。实验表明,基于简化动力学方法,GRACE和SWARM卫星定轨精度均到达厘米级。  相似文献   

13.
Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called “pseudo-stochastic pulses” model, were also analyzed.  相似文献   

14.
Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called "pseudo-stochastic pulses" model, were also analyzed.  相似文献   

15.
应用GRACE卫星数据反演高精度静态地球重力场是大地测量学界的热点之一。考虑到经典动力学法线性化误差随弧长拉长而迅速增长,本文以GRACE卫星轨道观测值为初值的线性化方法,建立了应用GRACE卫星轨道和星间距离变率反演地球重力场的改进动力学法理论模型。利用2003年1月至2010年12月的GRACE卫星姿态、轨道、星间距离变率和非保守力加速度等观测数据,解算了一个180阶次的无约束全球静态重力场模型Tongji-Dyn01s和一个采用Kaula规则约束的全球重力场模型Tongji-Dyn01k。与国际不同机构最新发布的纯GRACE数据解算的重力场模型(包括AIUB-GRACE03S、GGM05S、ITSG-Grace2014k和Tongji-GRACE01)进行比较,并利用DTU13海洋重力异常和GPS/水准高程异常进行外部检核,结果表明,Tongji-Dyn01s与国际最新模型精度处于同一水平,然而Tongji-Dyn01k模型总体上更加靠近EIGEN6C2重力场模型。  相似文献   

16.
低轨卫星精密定轨中重力场模型误差的补偿   总被引:2,自引:0,他引:2  
分析了不同重力场对低轨卫星运动影响的特征,并基于CHAMP卫星和GRACE卫星的真实轨道,利用轨道积分和轨道拟舍的方法,研究了线性分段加速度、周期性分段加速度以厦虚拟随机脉冲加速度在精密定轨中对重力场模型误差的补偿效果。  相似文献   

17.
Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time–frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that “observes” the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate that the radial overlap differences between the autonomous orbits are less than 15.0 cm for the inclined geosynchronous orbit (IGSO) satellites and less than 10.0 cm for the MEO satellites. The SLR residuals are approximately 15.0 cm for the IGSO satellites and approximately 10.0 cm for the MEO satellites, representing an improvement over the L-band orbits.  相似文献   

18.
采用2015年5月24日—30日的Swarm星载GPS双频观测数据,基于Melbourne-Wübbena(MW)和消电离层线性组合,在精密单点定位技术的基础上,采用批处理最小二乘估计法对不同轨道高度的Swarm系列卫星进行非差运动学精密定轨。利用星载GPS相位观测值残差、与欧空局发布的简化动力学轨道对比,以及SLR检核3种方法对Swarm系列卫星非差运动学定轨结果进行精度评估。结果表明:①Swarm系列卫星星载GPS相位观测值残差RMS为6~7 mm;②与欧空局发布的简化动力学轨道进行求差,径向、切向及法向轨道差值RMS为2~4 cm;③与欧空局发布的运动学轨道进行求差,径向、切向及法向轨道差值RMS为1~2 cm;④SLR检核结果表明Swarm-A/B/C卫星轨道精度为3~4 cm。因此,采用非差运动学定轨方法与本文提供的定轨策略进行Swarm系列卫星精密定轨是切实可行的,定轨精度为厘米级。  相似文献   

19.
Alternative mission architectures for a gravity recovery satellite mission   总被引:4,自引:1,他引:3  
Since its launch in 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has been providing measurements of the time-varying Earth gravity field. The GRACE mission architecture includes two satellites in near-circular, near-polar orbits separated in the along-track direction by approximately 220 km (e.g. collinear). A microwave ranging instrument measures changes in the distance between the spacecraft, while accelerometers on each spacecraft are used to measure changes in distance due to non-gravitational forces. The fact that the satellites are in near-polar orbits coupled with the fact that the inter-satellite range measurements are directed in the along-track direction, contributes to longitudinal striping in the estimated gravity fields. This paper examines four candidate mission architectures for a future gravity recovery satellite mission to assess their potential in measuring the gravity field more accurately than GRACE. All satellites were assumed to have an improved measurement system, with an inter-satellite laser ranging instrument and a drag-free system for removal of non-gravitational accelerations. Four formations were studied: a two-satellite collinear pair similar to GRACE; a four-satellite architecture with two collinear pairs; a two-satellite cartwheel formation; and a four-satellite cartwheel formation. A cartwheel formation consists of satellites performing in-plane, relative elliptical motion about their geometric center, so that inter-satellite measurements are, at times, directed radially (e.g. parallel to the direction towards the center of the Earth) rather than along-track. Radial measurements, unlike along-track measurements, have equal sensitivity to mass distribution in all directions along the Earth’s surface and can lead to higher spatial resolution in the derived gravity field. The ability of each architecture to recover the gravity field was evaluated using numerical simulations performed with JPL’s GIPSY-OASIS software package. Thirty days of data were used to estimate gravity fields complete to degree and order 60. Evaluations were done for 250 and 400 km nominal orbit altitudes. The sensitivity of the recovered gravity field to under-sampled effects was assessed using simulated errors in atmospheric/ocean dealiasing (AOD) models. Results showed the gravity field errors associated with the four-satellite cartwheel formation were approximately one order of magnitude lower than the collinear satellite pair when only measurement system errors were included. When short-period AOD model errors were introduced, the gravity field errors for each formation were approximately the same. The cartwheel formations eliminated most of the longitudinal striping seen in the gravity field errors. A covariance analysis showed the error spectrum of the cartwheel formations to be lower and more isotropic than that of the collinear formations.  相似文献   

20.
Kinematic positions of Low Earth Orbiters based on GPS tracking are frequently used as pseudo-observations for single satellite gravity field determination. Unfortunately, the accuracy of the satellite trajectory is partly limited because the receiver synchronization error has to be estimated along with the kinematic coordinates at every observation epoch. We review the requirements for GPS receiver clock modeling in Precise Point Positioning (PPP) and analyze its impact on kinematic orbit determination for the two satellites of the Gravity Recovery and Climate Experiment (GRACE) mission using both simulated and real data. We demonstrate that a piecewise linear parameterization can be used to model the ultra-stable oscillators that drive the GPS receivers on board of the GRACE satellites. Using such a continuous clock model allows position estimation even if the number of usable GPS satellites drops to three and improves the robustness of the solution with respect to outliers. Furthermore, simulations indicate a potential accuracy improvement of the satellite trajectory of at least 40 % in the radial direction and up to 7 % in the along-track and cross-track directions when a 60-s piecewise linear clock model is estimated instead of epoch-wise independent receiver clock offsets. For PPP with real GRACE data, the accuracy evaluation is hampered by the lack of a reference orbit of significantly higher accuracy. However, comparisons with a smooth reduced-dynamic orbit indicate a significant reduction of the high-frequency noise in the radial component of the kinematic orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号