首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The Mantos Blancos copper deposit (500 Mt at 1.0% Cu) was affected by two superimposed hydrothermal events: (i) phyllic alteration related to a rhyolitic dome emplacement and brecciation at ca 155 Ma; and (ii) potassic, sodic and propylitic alteration at ca 142 Ma, coeval with stocks and sills emplacement of dioritic and granodioritic porphyries, that locally grade upwards into polymictic magmatic hydrothermal breccias. Major hypogene copper sulfide mineralization is related to the second event. A late‐ore mafic dike swarm cross‐cuts all rocks in the deposit. Two types of granodioritic porphyries can be distinguished from petrographic observations and geochemical data: granodiorite porphyry I (GP I) and granodiorite porphyry II (GP II), which resulted from two different trends of magmatic evolution. The concave shape of the rare earth element (REE) distribution pattern together with the weak or absence of negative Eu anomalies in mafic dikes, dioritic and GP I porphyries, suggest hornblende‐dominated fractionation for this magmatic suite. In contrast, distinct negative Eu anomalies and the flat REE patterns suggest plagioclase‐dominated fractionation, at low oxygen fugacity, for the GP II porphyry suite. But shallow mixing and mingling between silicic and dioritic melts are also likely for the formation of the GP II and polymictic breccias, respectively. Sr‐Nd isotopic compositions suggest that the rhyolitic dome rocks were generated from a dominantly crustal source, while the GP I has mantle affinity. The composition of melt inclusions (MI) in quartz crystals from the rhyolitic dome is similar to the bulk composition of their host rock. The MI analyzed in quartz from GP II and in the polymictic magmatic hydrothermal breccia of the deposit are compositionally more evolved than their host rocks. Field, geochemical and petrographic data provided here point to dioritic and siliceous melt interaction as an inducing mechanism for the release of hydrothermal fluids to form the Cu mineralization.  相似文献   

2.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   

3.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   

4.
Abstract: Hydrothermal systems related to magmatic intrusions in the Jozankei-Zenibako district, southwest Hokkaido are examined, based on field observations, K-Ar ages, and alteration mineral assemblages. The study reveals five major magmat–ic–hydrothermal systems of Late Miocene in age, comprising Ogawa (9. 7 Ma), Jozankei (9. 5–9. 0 Ma), Otarunaigawa (8. 7 Ma), Asarigawa (8. 8 and 6. 7 Ma) and Hariusu (6. 7 Ma). The Ogawa system is related to granodiorite, and the Jozankei, Otarunaigawa and Asarigawa systems are related to quartz porphyry.
The Ogawa system includes potassic, sericitic, propylitic and advanced argillic alteration as well as base-metal mineralization, represented by the Toyotomi deposit. The Jozankei and Otarunaigawa systems lack significant potassic alteration, and are accompanied by sericitic and propylitic alteration. The Otarunaigawa system is associated with base-metal mineralization at Toyohiro and Inatoyo. The Asarigawa and Hariusu systems include advanced argillic and argillic alteration, as well as iron sulfide deposits. The presence of potassic alteration only in the Ogawa system is ascribed to deeper emplacement (˜3 km from the surface) of the intrusive magma. These systems formed in terrestrial environments that existed from ca. 11 Ma to 8. 5 Ma and after 7. 5 Ma in the district.
Age–data compilation shows that the major advanced argillic alteration events in southwest Hokkaido, including those in the Jozankei-Zenibako district, formed during the periods from 9. 7–6. 5 Ma and 3. 5–1. 5 Ma. These periods correspond to the timing of normal subduction of the Pacific plate beneath the Northeast Japan arc. Normal, in contrast to oblique, plate subduction is characterized by andesitic, polygenetic volcanism and associated advanced argillic alteration.  相似文献   

5.
The Duolong district is located in the south Qiangtang terrane of Tibet and is the most significant ore cluster within the Bangongco-Nujiang metallogenic belt. Duolong contains one giant, three large and two medium to small-sized porphyry (±epithermal ± breccia) copper deposits and several other mineralized porphyry bodies. All deposits are closely associated with early Cretaceous (123–115 Ma) intermediate-felsic intrusions. Naruo is a poorly studied porphyry-breccia copper deposit in the north of the Duolong district. Hydrothermal alteration surrounding the ore-bearing granodiorite at Naruo is characterized by an inner potassic zone and an outer propylitic zone, overlapped locally by minor phyllic and argillic alteration assemblages. A detailed paragenetic study has identified five distinct hydrothermal veins (M, A, B, C, D) within the porphyry system. Hydrothermal B veins are strongly related to copper mineralization. Strong propylitic alteration is also observed throughout the hydrothermal breccias identified at Naruo. Sandstone breccia, diorite-bearing breccia and granodiorite-bearing breccia were identified according to the distribution and composition of clasts. U-Pb zircon dating has determined the ages of the ore-bearing granodiorite (121.6 ± 1.3 Ma) and a barren intrusion (115.5 ± 1.1 Ma) within the porphyry system, diorite clasts (122.3 ± 0.9 Ma) and later diorite matrix (120.5 ± 1.0 Ma) in the hydrothermal breccia system, suggesting that with the exception of the late barren intrusion, they all belong to the same mineralizing event at Duolong. The geological and geochemical evidence presented in this study suggest that the porphyry and breccia systems may have originated from the same magma source, but are now spatially independent.  相似文献   

6.
The alkalic porphyry gold–copper deposits of the Cadia district occur in the eastern Lachlan Fold Belt of New South Wales, Australia. The district comprises four porphyry deposits (Ridgeway, Cadia Quarry, Cadia Hill, and Cadia East) and two iron–copper–gold skarn deposits (Big Cadia and Little Cadia). Almost 1,000 tonnes of contained gold and more than four million tonnes of copper have been discovered in these systems, making Cadia the world’s largest known alkalic porphyry district, in terms of contained gold. Porphyry gold–copper ore at Cadia is associated with quartz monzonite intrusive complexes, and is hosted by central stockwork and sheeted quartz–sulfide–(carbonate) vein systems. The Cadia porphyry deposits are characterized by cores of potassic and/or calc–potassic alteration assemblages, and peripheral halos of propylitic alteration, with late-stage phyllic alteration mostly restricted to fault zones. Hematite dusting is an important component of the propylitic alteration assemblage, and has produced a distinctive reddening of feldspar minerals in the volcanic wall rocks around the mineralized centers. Sulfide mineralization is strongly zoned at Ridgeway and Cadia East, with bornite-rich cores surrounded by chalcopyrite-rich halos and peripheral zones of pyrite mineralization. The Cadia Hill and Cadia Quarry deposits have chalcopyrite-rich cores and pyrite-rich halos, and Cadia Hill contains a high-level bornite-rich zone. Distinctive sulfur isotopic zonation patterns have been identified at Ridgeway, Cadia Hill, and Cadia East. The deposit cores are characterized by low δ34Ssulfide values (−10 to −4‰), consistent with sulfide precipitation from an oxidized (sulfate-predominant) magmatic fluid at 450 to 400°C. Pyrite grains that occur in the propylitic alteration halos typically have δ34Ssulfide values near 0‰. There is a gradual increase in δ34Ssulfide values outwards from the deposit cores through the propylitic halos. Water–rock interaction during propylitic alteration caused magmatic sulfate reduction and concomitant oxidation of ferrous iron-bearing minerals, resulting in enrichment of 34S in pyrite and also producing the distinctive reddened, hematite-rich alteration halos to the Cadia deposits. These results show that sulfur isotope analyses have potential applications in the exploration of alkalic porphyry-style deposits, with zones of depleted δ34Ssulfide values most prospective for high-grade mineralization.  相似文献   

7.
The Sossego iron oxide–copper–gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists of two major groups of orebodies (Pista–Sequeirinho–Baiano and Sossego–Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW–ESE-striking shear zone that defines the contact between metavolcano–sedimentary units of the ∼2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ∼2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista–Sequeirinho–Baiano orebodies have undergone regional sodic (albite–hematite) alteration and later sodic–calcic (actinolite-rich) alteration associated with the formation of massive magnetite–(apatite) bodies. Both these alteration assemblages display ductile to ductile–brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego–Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic–sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite–quartz–epidote–chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego–Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with subsidiary siegenite, and millerite. Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego–Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic–calcic alteration stage was characterized by temperatures exceeding 500°C and values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper–gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids −1.8 ± 3.4‰. The calculated δDH2O and values suggest that the fluids that formed the early calcic–sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.  相似文献   

8.
The breccia-hosted epithermal gold–silver deposit of Chah Zard is located within a high-K, calc-alkaline andesitic to rhyolitic volcanic complex in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA), west central Iran. The total measured resource for Chah Zard is ∼2.5 million tonnes of ore at 12.7 g/t Ag and 1.7 g/t Au (28.6 t Ag, 3.8 t Au), making it one of the largest epithermal gold deposits in Iran. Magmatic and hydrothermal activity was associated with local extensional tectonics in a strike-slip regime formed in transtensional structures of the Dehshir-Baft strike-slip fault system. The host rocks of the volcanic complex consist of Eocene sedimentary and volcanic rocks covered by Miocene sedimentary rocks. LA-ICP–MS U–Pb zircon geochronology yields a mean age of 6.2 ± 0.2 Ma for magmatic activity at Chah Zard. This age represents the maximum age of mineralization and may indicate a previously unrecognized mineralization event in the UDMA. Breccias and veins formed during and after the waning stages of explosive brecciation events due to shallow emplacement of rhyolite porphyry. Detailed systematic mapping leads to the recognition of three distinct breccia bodies: volcaniclastic breccia with a dominantly clastic matrix; gray polymict breccia with a greater proportion of hydrothermal cement; and mixed monomict to polymict breccia with clay matrix. The polymictic breccias generated bulk-mineable ore, whereas the volcaniclastic breccia is relatively impermeable and largely barren. Precious metals occur with sulfide and sulfosalt minerals as disseminations, as well as in the veins and breccia cements. There is a progression from pyrite-dominated (stage 1) to pyrite-base metal sulfide and sulfosalt-dominated (stages 2 and 3) to base metal sulfide-dominated (stage 4) breccias and veins. Hydrothermal alteration and deposition of gangue minerals progressed from illite-quartz to quartz-adularia, carbonate, and finally gypsum-dominated assemblages. Free gold occurs in stages 2 and 4, principally intergrown with pyrite, quartz, chalcopyrite, galena, sphalerite, and Ag-rich tennantite–tetrahedrite, and also as inclusions in pyrite. High Rb/Sr ratios in ore-grade zones are closely related to sericite and adularia alteration. Positive correlations of Au and Ag with Cu, As, Pb, Zn, Sb, and Cd in epithermal veins and breccias suggest that all these elements are related to the same mineralization event.  相似文献   

9.
The Southwest prospect is located at the southwestern periphery of the Sto. Tomas II porphyry copper–gold deposit in the Baguio District, northwestern Luzon, Philippines. The Southwest prospect hosts a copper‐gold mineralization related to a complex of porphyry intrusions, breccia facies, and overlapping porphyry‐type veinlets emplaced within the basement Pugo metavolcanics rocks and conglomerates of the Zigzag Formation. The occurrences of porphyry‐type veinlets and potassic alteration hosted in the complex are thought to be indications of the presence of blind porphyry deposits within the Sto. Tomas II vicinity. The complex is composed of at least four broadly mineralogically similar dioritic intrusive rocks that vary in texture and alteration type and intensity. These intrusions were accompanied with at least five breccia facies that were formed by the explosive brecciation, induced by the magmatic–hydrothermal processes and phreatomagmatic activities during the emplacement of the various intrusions. Hydrothermal alteration assemblages consisting of potassic, chlorite–magnetite, propylitic and sericite–chlorite alteration, and contemporaneous veinlet types were developed on the host rocks. Elevated copper and gold grades correspond to (a) chalcopyrite–bornite assemblage in the potassic alteration in the syn‐mineralization early‐mineralization diorite (EMD) and contemporaneous veinlets and (b) chalcopyrite‐rich mineralization associated with the chalcopyrite–magnetite–chlorite–actinolite±sericite veinlets contemporaneous with the chlorite–magnetite alteration. Erratic remarkable concentrations of gold were also present in the late‐mineralization Late Diorite (LD). High XMg of calcic amphiboles (>0.60) in the intrusive rocks indicate that the magmas have been oxidizing since the early stages of crystallization, while a gap in the composition of Al between the rim and the cores of the calcic amphiboles in the EMD and LD indicate decompression at some point during the crystallization of these intrusive rocks. Fluid inclusion microthermometry suggests the trapping of immiscible fluids that formed the potassic alteration, associated ore mineralization, and sheeted quartz veinlets. The corresponding formation conditions of the shallower and deeper quartz veinlets were estimated at pressures of 50 and 30 MPa and temperatures of 554 and 436°C at depths of 1.9 and 1.1 km. Temperature data from the chlorite indicate that the chalcopyrite‐rich mineralization associated with the chlorite–magnetite alteration was formed at a much lower temperature (ca. 290°C) than the potassic alteration. Evidence from the vein offsetting matrix suggests multiple intrusions within the EMD, despite the K‐Ar ages of the potassic alteration in EMD and hornblende in the LD of about the same age at 3.5 ± 0.3 Ma. The K‐Ar age of the potassic alteration was likely to be thermally reset as a result of the overprinting hydrothermal alteration. The constrained K‐Ar ages also indicate earlier formed intrusive rocks in the Southwest prospect, possibly coeval to the earliest “dark diorite” intrusion in the Sto. Tomas II deposit. In addition, the range of δ34S of sulfide minerals from +1.8‰ to +5.1‰ in the Southwest prospect closely overlaps with the rest of the porphyry copper and epithermal deposits in the Sto. Tomas II deposit and its vicinity. This indicates that the sulfides may have formed from a homogeneous source of the porphyry copper deposits and epithermal deposits in the Sto. Tomas II orebody and its vicinity. The evidence presented in this work proves that the porphyry copper‐type veinlets and the adjacent potassic alteration in the Southwest prospect are formed earlier and at a shallower level in contrast with the other porphyry deposits in the Baguio District.  相似文献   

10.
A large scale Proterozoic breccia system consisting of numerous individual breccia bodies, collectively known as Wernecke Breccia, occurs in north-central Yukon Territory, Canada. Breccias cut Early Proterozoic Wernecke Supergroup sedimentary rocks and occur throughout the approximately 13 km thick deformed and weakly metamorphosed sequence. Iron oxide–copper–gold ± uranium ± cobalt mineralization is associated with the breccia bodies and occurs as veins and disseminations within breccia and surrounding rocks and locally forms the breccia matrix. Extensive sodic and potassic metasomatic alteration occurs within and around breccia bodies and is overprinted by pervasive calcite and dolomite/ankerite, and locally siderite, alteration, respectively. Multiple phases of brecciation, alteration and mineralization are evident. Breccia bodies are spatially associated with regional-scale faults and breccia emplacement made use of pre-existing crustal weaknesses and permeable zones. New evidence indicates the presence of metaevaporitic rocks in lower WSG that may be intimately related to breccia formation. No evidence of breccia-age magmatism has been found to date.
Julie HuntEmail:
  相似文献   

11.
Major Cu–Au deposits of iron oxide–copper–gold (IOCG) style are temporally associated with oxidized, potassic granitoids similar to those linked to major porphyry Cu–Au deposits. Stable and radiogenic isotope evidence indicates fluids and ore components were likely sourced from the intrusions. IOCG deposits form over a range of crustal levels because CO2-rich fluids separate from the magmas at higher pressures than in CO2-poor systems, thereby, promoting partitioning of H2O, Cl and metals to the fluid phase. At deep levels, the magma–fluid system cannot generate sufficient mechanical energy to fracture the host rocks as in porphyry systems and the IOCG deposits therefore form in a variety of fault-related structural traps where the magmatic fluids may mix with other fluids to promote ore formation. At shallow levels, the IOCG deposits form breccia and fracture-hosted mineralization styles similar to the hydrothermal intrusive breccias and sulphide vein systems that characterize many porphyry Cu–Au deposits. The fluids associated with IOCG deposits are typically H2O–CO2–salt fluids that evolve by unmixing of the carbonic phase and by mixing with fluids from other sources. In contrast, fluids in porphyry systems typically evolve by boiling of moderate salinity fluid to produce high salinity brine and a vapor phase commonly with input of externally derived fluids. These different fluid compositions and mechanisms of evolution lead to different alteration types and parageneses in porphyry and IOCG deposits. Porphyry Cu–Au deposits typically evolve through potassic, sericitic and (intermediate and/or advanced) argillic stages, while IOCG deposits typically evolve through sodic(–calcic), potassic and carbonate-rich stages, and at deeper levels, generally lack sericitic and argillic alteration. The common association of porphyry and IOCG Cu–Au deposits with potassic, oxidized intermediate to felsic granitoids, together with their contrasting fluid compositions, alteration styles and parageneses suggest that they should be considered as part of the broad family of intrusion-related systems but that they are typically not directly related to each other.  相似文献   

12.
The Pingüino deposit, located in the low sulfidation epithermal metallogenetical province of the Deseado Massif, Patagonia, Argentina, represents a distinct deposit type in the region. It evolved through two different mineralization events: an early In-bearing polymetallic event that introduced In, Zn, Pb, Ag, Cd, Au, As, Cu, Sn, W and Bi represented by complex sulfide mineralogy, and a late Ag–Au quartz-rich vein type that crosscut and overprints the early polymetallic mineralization. The indium-bearing polymetallic mineralization developed in three stages: an early Cu–Au–In–As–Sn–W–Bi stage (Ps1), a Zn–Pb–Ag–In–Cd–Sb stage (Ps2) and a late Zn–In–Cd (Ps3). Indium concentrations in the polymetallic veins show a wide range (3.4 to 1,184 ppm In). The highest indium values (up to 1,184 ppm) relate to the Ps2 mineralization stage, and are associated with Fe-rich sphalerites, although significant In enrichment (up to 159 ppm) is also present in the Ps1 paragenesis associated with Sn-minerals (ferrokesterite and cassiterite). The hydrothermal alteration associated with the polymetallic mineralization is characterized by advanced argillic alteration within the immediate vein zone, and sericitic alteration enveloping the vein zone. Fluid inclusion studies indicate homogenisation temperatures of 308.2–327°C for Ps1 and 255–312.4°C for Ps2, and low to moderate salinities (2 to 5 eq.wt.% NaCl and 4 to 9 eq.wt.% NaCl, respectively). δ34S values of sulfide minerals (+0.76‰ to +3.61‰) indicate a possible magmatic source for the sulfur in the polymetallic mineralization while Pb isotope ratios for the sulfides and magmatic rocks (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 17.379 to 18.502; 15.588 to 15.730 and 38.234 to 38.756, respectively) are consistent with the possibility that the Pb reservoirs for both had the same crustal source. Spatial relationships, hydrothermal alteration styles, S and Pb isotopic data suggest a probable genetic relation between the polymetallic mineralization and dioritic intrusions that could have been the source of metals and hydrothermal fluids. Mineralization paragenesis, alteration mineralogy, geochemical signatures, fluid inclusion data and isotopic data, confirm that the In-bearing polymetallic mineralization from Pingüino deposit is a distinct type, in comparison with the well-known epithermal low sulfidation mineralization from the Deseado Massif.  相似文献   

13.
The Bacaba iron oxide–copper–gold deposit, situated within a WNW–ESE-striking shear zone in the Carajás Domain, Carajás Mineral Province, is hosted by the Serra Dourada Granite, the Bacaba Tonalite, and crosscutting gabbro intrusions, which were intensely affected by sodic (albite–scapolite), potassic, chloritic, and hydrolytic hydrothermal alteration. This deposit is located 7 km northeast of the world-class Sossego iron oxide–copper–gold deposit and might represent a distal and deeper portion of the same or related hydrothermal system. The U–Pb laser ablation inductively coupled plasma–mass spectrometry data for zircon from a sodically altered sample of the Serra Dourada Granite yielded a 2,860±22 Ma (MSWD=11.5) age. Three samples from the Bacaba Tonalite, including one with potassic alteration and two with Cu–Au mineralization, rendered the 3,001.2±3.6 Ma (MSWD=1.8), 2,990.9±5.8 Ma (MSWD=1.9), and 3,004.6±9 Ma (MSWD=2.2) ages, respectively. The ca. 2.86 and ca. 3.0 Ga ages are interpreted as the timing of the igneous crystallization of the Serra Dourada Granite and the Bacaba Tonalite, respectively, and represent the oldest magmatic events recognized in the Carajás Domain. The Serra Dourada Granite and the Bacaba Tonalite are interpreted to greatly predate the genesis of the Bacaba deposit. A genetic link is improbable in the light of the similarities with the Sossego deposit, which is also hosted by younger ca. 2.76 Ga metavolcano-sedimentary units of the Itacaiúnas Supergroup. In this context, the iron oxide–copper–gold deposits in the southern sector of the Carajás Domain could be mainly controlled by important crustal discontinuities, such as a regional shear zone, rather than be associated with a particular rock type. These results expand the potential for occurrences of iron oxide–copper–gold deposits within the Mesoarchean basement rocks underlying the Carajás Basin, particularly those crosscut by Neoarchean shear zones.  相似文献   

14.
The Mont-de-l’Aigle deposit is located in the northern part of Dome Lemieux, in the Connecticut Valley-Gaspé Synclinorium, Gaspé Peninsula, Québec. The Dome Lemieux is a subcircular antiform of Siluro–Devonian sedimentary rocks that is cut by numerous mafic and felsic sills and dikes of Silurian to Late Devonian age. Plutonism occurred in a continental within-plate extensional setting typical of orogenic collapse. The Cu−Fe (± Au) mineralization of Mont-de-l’Aigle occurs in veins, stockworks, and breccias. Mineralization is located near or within N−S and NW−SE faults cutting sedimentary rocks. IOCG mineralization postdates intrusions, skarns, hornfels, and epithermal mineralization typical of the southern part of the Dome Lemieux. The paragenetic sequence comprises: (1) pervasive sodic, potassic, chlorite, and silica alteration, (2) hematite, quartz, pyrite, magnetite, and chalcopyrite veins, stockworks and breccias and, (3) dolomite ± hematite veins and veinlets cutting the earlier mineralization. Intrusions display proximal sodic and potassic alteration, whereas sedimentary rocks have proximal decalcification, silicification, and potassic alteration. Both intrusive and sedimentary rocks are affected by a pervasive distal chlorite (± silica) alteration. The sulfur isotope composition of pyrite and chalcopyrite (δ34S=−1.5 to 4.8‰) suggests that sulfur was derived mainly from igneous rocks. Fluid δ18O (−0.4 to 2.65‰) indicates meteoric or seawater that reacted with the country rocks. Mixing of hot magmatic fluids with a cooler fluid, perhaps meteoric or seawater is suggested for mineral deposition and alteration of the Mont-de-l’Aigle deposit. The mineralogy, alteration, and sulfur isotope composition of the Mont-de-l’Aigle deposit compare well with IOCG deposits worldwide, making the Mont-de-l’Aigle deposit a rare example of Paleozoic IOCG mineralization, formed at shallow depth, within a low metamorphic grade sedimentary rock sequence.  相似文献   

15.
Uranium–lead zircon (laser ablation multi-collector ICP-MS spot analysis) ages from La Caridad porphyry copper deposit in the Nacozari District, Northeastern Sonora, Mexico, suggest a short period of magmatism, between 55.5 and 52.6 Ma. Two U–Pb ages from the mineralized quartz monzonite unit, showing different textural characteristics, yielded indistinguishable crystallization ages (~54 Ma), and indicate that the intrusion responsible for the mineralization occurred as a single large complex unit, instead of multiple pulses of magmatism. Some zircons analyzed also show inherited ages in cores recording dates of 112–124 Ma, 141–166 Ma and 1.4 Ga. The Re–Os molybdenite ages from the potassic and phyllic hydrothermal alteration veins yielded identical ages within error, 53.6±0.3 Ma and 53.8±0.3 Ma, respectively (weighted average of 53.7±0.21 Ma), supporting a restricted period for the mineralization. The geochronological data thus indicate a short-lived magmatic and hydrothermal system. The inherited zircons of Precambrian and Late Jurassic-Mid Cretaceous age found in the intrusive rocks of La Caridad deposit, can be explained considering two possible scenarios within the tectonic/magmatic evolution of the area. The first scenario considers the presence of a Precambrian anorogenic granitic basement that is intruded by Mesozoic (Jurassic–Cretaceous) units present beneath the La Caridad deposit. The second scenario suggests that the Mesozoic Glance Conglomerate Formation of Arizona underlies the Paleocene volcanic-igneous pile in the La Caridad area.  相似文献   

16.
The 40Ar/39Ar geochronological method was applied to date magmatic and hydrothermal alteration events in the Mantos Blancos mining district in the Coastal Cordillera of northern Chile, allowing the distinction of two separate mineralization events. The Late Jurassic Mantos Blancos orebody, hosted in Jurassic volcanic rocks, is a magmatic-hydrothermal breccia-style Cu deposit. Two superimposed mineralization events have been recently proposed. The first event is accompanied by a phyllic hydrothermal alteration affecting a rhyolitic dome. The second mineralization event is related to the intrusion of bimodal stocks and sills inside the deposit. Because of the superposition of several magmatic and hydrothermal events, the obtained 40Ar/39Ar age data are complex; however, with a careful interpretation of the age spectra, it is possible to detect complex histories of successive emplacement, alteration, mineralization, and thermal resetting. The extrusion of Jurassic basic to intermediate volcanic rocks of the La Negra Formation is dated at 156.3 ± 1.4 Ma (2σ) using plagioclase from an andesitic lava flow. The first mineralization event and associated phyllic alteration affecting the rhyolitic dome occurred around 155–156 Ma. A younger bimodal intrusive event, supposed to be equivalent to the bimodal stock and sill system inside the deposit, is probably responsible for the second mineralization event dated at ca. 142 Ma. Other low-temperature alteration events have been dated on sericitized plagioclase at ca. 145–146, 125, and 101 Ma. This is the first time that two distinct mineralization events have been documented from radiometric data for a copper deposit in the metallogenic belt of the Coastal Cordillera of northern Chile. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead–silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/39Ar dates suggest a minimum age of 61.5 ± 0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0 ± 0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1–2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4–35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375°C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469 ± 25°C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2‰ to 13.4‰ and −60‰ to −39‰, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe.  相似文献   

18.
El Galeno and Michiquillay are early to middle Miocene Cu–Au–Mo porphyry-related deposits located in the auriferous Cajamarca district of northern Peru. The El Galeno deposit (486 Mt at 0.57% Cu, 0.14 g/t Au and 150 ppm Mo) is associated with multiple dioritic intrusions hosted within Lower Cretaceous quartzites and shales. Emplacement of the porphyry stocks (17.5–16.5 Ma) in a hanging wall anticline was structurally controlled by oblique faults superimposed on early WNW-trending fold-thrust structures. Early K-feldspar–biotite–magnetite (potassic) alteration was associated with pyrite and chalcopyrite mineralisation. A quartz–magnetite assemblage that occurs at depth has completely replaced potassically altered rocks. Late- and post-mineralisation stocks are spatially and temporally related to weak quartz–muscovite (phyllic) alteration. High Au grades are associated with early intrusive phases located near the centre of the deposit. Highest Cu grades (~0.9% Cu) are mostly associated with a supergene enrichment blanket, whilst high Mo grades are restricted to contacts with the metasedimentary rocks. The Michiquillay Cu–Au–Mo deposit (631 Mt at 0.69% Cu, 0.15 g/t Au, 100–200 ppm Mo) is associated with a Miocene (20.0–19.8 Ma) dioritic complex that was emplaced within the hanging wall of a back thrust fault. The intrusive complex is hosted in quartzites and limestones. The NE-trending deposit is crosscut by NNW-trending prospect-scale faults that influenced both alteration and metal distribution. In the SW and NE of the deposit, potassic alteration zones contain moderate hypogene grades (0.14 g/t Au and 0.8% Cu) and are characterised by chalcopyrite and pyrite mineralisation. The core of the deposit is defined by a lower grade (0.08 g/t Au and 0.57% Cu) phyllic alteration that overprinted early potassic alteration. Michiquillay contains a supergene enrichment blanket of 45–80 m thickness with an average Cu grade of 1.15%, which is overlain by a deep leached cap (up to 150 m). Cu–Au–Mo (El Galeno-Michiquillay) and Au-rich (Minas Conga) deposits in the Cajamarca region are of similar age (early–middle Miocene) and intrusive rock type (dioritic) associations. Despite these geochronological and geochemical similarities, findings from this study suggest variation in metal grade between the hybrid-type and Au-rich deposits result from a combination of physio-chemical factors. These include variations in temperature and oxygen fugacity conditions during hypogene mineralisation resulting in varied sulphide assemblages, host rock type, precipitation of ubiquitous hydrothermal magnetite, and late hydrothermal fluid flow resulting in a well-developed phyllic alteration zone.  相似文献   

19.
In the Carolina de Michilla district, northern Chile, stratabound copper mineralization is hosted by Jurassic volcanic rocks along the trace of the Atacama fault system. In this study, we present the overall effects of hydrothermal alteration on the magnetic properties of rocks in this district. Two types of metasomatic alteration associations occur, one of regional extent and the other of local hydrothermal alteration associated with copper mineralization (e.g., Lince–Estefanía–Susana). Regional alteration is interpreted as a low-grade “propylitic association” characterized by an epidote–chlorite–smectite–titanite–albite–quartz–calcite association. The local hydrothermal alteration is characterized broadly by a quartz–albite–epidote–chlorite–calcite mineral assemblage. The most pervasive alteration mineral is albite, followed by epidote and, locally, actinolite. These minerals contrast sharply against host rock minerals such as chlorite, calcite, zeolite, prehnite, and pumpellyite, but alteration is constrained to mineralized bodies as narrow and low contrast alteration halos that go outwards from actinolite–albite to epidote–albite, to epidote–chlorite, and finally to chlorite. Hydrothermal alteration minerals, compared to regional alteration minerals, show iron-rich epidotes, a lower chlorite content of the chlorite–smectite series, and a nearly total albite replacement of plagioclase in the mineralized zones. Opaque minerals associated with regional alteration are magnetite and maghemite, and those associated to hydrothermal alteration are magnetite, hematite, and copper sulphides. We present paleomagnetic results from nine sites in the Michilla district and from drill cores from two mines. Local effects of hydrothermal alteration on the original magnetic mineralogy indicate similar characteristics and mineralogy, except for an increase of hematite that is spatially associated with the Cu–sulphide breccias with low magnetic susceptibilities. Results indicate that it is impossible to magnetically differentiate mineralized bodies from unmineralized lavas, except for pyrite-rich hydrothermal breccias. In conclusion, for stratabound copper deposits of the Michilla type, the overall effect of hydrothermal alteration on the paleomagnetic properties of rocks is of low contrast, not clearly discernable even at a small scale. From an exploration point of view, magnetic exploration surveys should not discern mineralized bodies of Cu–sulphide breccias except in detailed ground surveys due to the small size of contrasting bodies. Unoriented drill cores with primary ore mineralization record a characteristic remanent magnetization of reverse polarity. Taking into account the azimuth and dip of the drill cores, we were able to compare the magnetization of the mineralized bodies with the characteristic directions from sites drilled in situ from Late Jurassic–Early Cretaceous intrusives mostly. The characteristic direction recorded by the Pluton Viera is similar to the magnetization of the ore bodies of the Estefania mine. If copper mineralization mostly postdates the tilt of the volcanic flows, the low paleomagnetic inclinations suggest an age for the mineralization near 145 Ma, the time of the lowest paleolatitude for the South American plate during the Mesozoic.  相似文献   

20.
西藏波龙斑岩铜金矿床是新近在青藏高原中部发现的规模最大的斑岩型矿床。文章对该矿床内的蚀变钾长石和蚀变绢云母进行了40Ar/39Ar年代学测试,获得蚀变钾长石的40Ar/39Ar坪年龄为(118.33±0.60) Ma,反等时线年龄为(118.49±0.74) Ma (初始40Ar/36Ar=286.1±8.4),表明波龙斑岩铜金矿床的钾化蚀变年龄为118~119 Ma;蚀变绢云母的40Ar/39Ar坪年龄为(121.61±0.67) Ma,反等时线年龄为(121.1±2.0) Ma (初始40Ar/36Ar=279±19)。由于蚀变绢云母测试样品内可能混入了斜长石,受其影响,蚀变绢云母测年结果的下限可能代表了该矿床绢英岩化蚀变年龄。这些蚀变钾长石和蚀变绢云母40Ar/39Ar测年结果与波龙矿床的成岩年龄值和成矿年龄值在误差范围内基本一致,表明该矿床的钾化和绢英岩化与成岩、成矿同期,该矿床的岩浆-热液活动过程的时限为121~118 Ma。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号