首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
用电感耦合等离子体质谱法(ICP-MS)测定地质样品中的稀土及难熔元素,混合酸敞开酸溶法和碱熔融法是两种主要的溶样方法。但地质样品组分复杂,元素之间存在相互共生的现象,对于特殊元素、特殊样品用传统酸溶法会造成部分元素消解不完全,使测定结果不准确;而碱熔法的操作过程繁琐,且溶液盐度高,易产生基体干扰和堵塞仪器进样系统。本文改进了传统四酸和五酸体系,采用氢氟酸-硝酸-硫酸敞开酸溶体系,用国家一级标准物质制作标准曲线测定15种稀土元素,方法准确度(ΔlgC)为0.001~0.027。同时改进了偏硼酸锂碱熔法,样品用偏硼酸锂碱熔提取,加入氢氧化钠调节溶液至碱性条件,所测元素与偏硼酸锂共沉淀后过滤分离熔剂,再用硝酸复溶测定15种稀土元素及铌钽锆铪。两种溶样方法的测定值与认定值的相对误差为1.09%~9.30%。将混合酸敞开酸溶法测定稀土元素、偏硼酸锂碱熔法测定铌钽锆铪的结果与其他实验室密闭酸溶法相比,两组数据的相对偏差为0.13%~15.32%。本实验表明,混合酸敞开酸溶法适用于测定地质样品中的稀土元素,偏硼酸锂碱熔法不仅适用于测定地质样品中的稀土元素及铌钽锆铪,也适用于测定如古老高压变质岩石及铝含量高的样品中的铌钽锆铪。  相似文献   

2.
花岗伟晶岩富集锂铍铷铯铌钽等稀有金属元素,准确测定其中的大离子亲石元素、高场强元素和稀土等微量元素,可用于判断成矿流体物质来源、成岩构造环境。目前的测试方法研究主要集中在锂铍铷铯铌钽等少数元素,样品消解方法有四酸敞开法、五酸敞开法、密闭酸溶法等,存在难溶矿物分解不完全、锆铪钍铀和稀土等元素回收率偏低等问题。本文对比了盐酸-硝酸-氢氟酸-高氯酸敞开消解法、盐酸-硝酸-氢氟酸-高氯酸-硫酸敞开消解法、硝酸-氢氟酸密闭消解法三种方法的分解效果。结果表明:四酸消解法中,铌钽锆铪钨和重稀土元素结果严重偏低;五酸消解法由于采用硫酸-氢氟酸-过氧化氢体系提取,有效地防止了铌钽的水解,铌钽钨等元素测定结果准确,但锆铪钡铅和轻稀土元素测定结果偏低。硝酸-氢氟酸密闭消解法使用王水代替硝酸进行残渣复溶,促进了铌钽锆铪和稀土等元素的复溶,采用电感耦合等离子体发射光谱和质谱法(ICP-OES/MS)可以准确测定花岗伟晶岩中稀有金属、稀土元素等32种元素,方法检出限为0.004~2.50μg/g,精密度(RSD,n=12)为1.0%~8.3%。将该方法应用于8种花岗岩、伟晶岩及稀有金属矿标准物质和三种类型实际样品...  相似文献   

3.
稀土元素在矿石中有多种不同的赋存形式,主要有离子吸附型和矿物晶格型,稀土不同赋存形态对其本身准确分析测定有很大的影响。本文从稀土元素在矿石中不同赋存形态的角度出发,探讨了不同前处理方法对稀土准确测试结果的影响,采用盐酸-硝酸-氢氟酸-高氯酸(四酸)敞开酸溶、盐酸-硝酸-氢氟酸-高氯酸-硫酸(五酸)敞开酸溶、氢氟酸-硝酸封闭压力酸溶、氢氧化钠-过氧化钠碱熔四种方法对离子吸附型和矿物晶格型两类赋存类型的稀土矿石样品进行前处理,电感耦合等离子体发射光谱法测定其中的15种稀土元素。结果表明:对于离子吸附型的稀土矿石标准物质(GBW 07161、GBW 07188),四酸敞开酸溶法测定的结果明显偏低,15种稀土元素大都偏低10%~20%,五酸敞开酸溶法、封闭压力酸溶法和碱熔法的测定值与标准值吻合;而对于稀土以离子化合物及类质同象置换的形式赋存于矿物晶格中的白云鄂博轻稀土矿石样品,三种酸溶法结果较碱熔法均偏低,其中四酸敞开酸溶法偏低最多,约偏低20%左右,五酸敞开酸溶法和封闭压力酸溶法偏低5%~15%。本文提出,对于离子吸附型稀土矿,五酸敞开酸溶法和封闭压力酸溶法可以代替传统操作复杂的碱熔法,但对于稀土以离子形式赋存于矿物晶格型的稀土矿,目前最合适的前处理法是传统的碱熔法。  相似文献   

4.
高压密闭消解因称样量小、用酸量少、空白低等优点成为测定稀土元素前处理的主要方法。但锰矿石组分复杂,锰含量差别较大且具有多种不同价态,常含有伴(共)生金属和其他杂质,该方法采用常规酸溶体系很难将其消解完全,造成ICP-MS测试结果不准确。本文从样品前处理消解效果出发,选择锰矿石标准物质GBW07261、GBW07263、GBW07266和一个锰矿石样品,试验了三种酸溶前处理方法对锰矿石稀土元素测试的影响。结果表明:方法一(氢氟酸-硝酸密闭消解,硝酸复溶提取)不能将锰矿石样品完全消解,测定值偏低0. 28%~61. 31%;方法二(氢氟酸-硝酸-双氧水密闭消解,硝酸-双氧水复溶,硝酸提取)和方法三(氢氟酸-硝酸密闭消解,盐酸复溶,硝酸提取)均可将锰矿石样品消解完全,用ICP-MS测定稀土元素的数据较为接近,与传统的过氧化钠熔融ICP-MS法测定值吻合。但实验过程中发现对于锰含量较高的样品,方法三需多次重复加入盐酸复溶后方可将样品消解完全,而方法二复溶一次即可。因此,方法二对锰矿石样品的消解效率更高,精密度好(0. 96%~2. 68%),加标回收率在95. 0%~107. 0%之间,更适用于锰矿石中稀土元素的分析。  相似文献   

5.
常压酸溶法因溶矿效率高、成本低、检出限低,在地质实验室被广泛应用,但采用常用的氢氟酸-硝酸-盐酸-高氯酸四酸法处理样品,铌钽溶出率低,铌钽在容器壁发生水解和聚合反应导致其部分吸附或沉降,从而使测试结果偏低。因此,应用常压酸溶-电感耦合等离子体质谱(ICP-MS)分析地球化学勘查样品中的铌钽,需要解决的两个关键问题是铌钽的溶出率和试液中铌钽的水解。针对溶出率的不足,本方法在酸体系中引入硫酸,即氢氟酸-硝酸-盐酸-高氯酸-硫酸可以完全将铌钽溶出;针对水解,采用5%氢氟酸-5%硫酸-5%过氧化氢为提取剂,并采取与样品前处理相同分析流程的标准物质制作曲线,这两个方法相结合能有效抑制样品溶液中铌钽的水解,同时标准物质制作曲线法降低了ICP-MS分析中的样品溶液与标准溶液基体不一致引起的误差。本方法经国家标准物质验证,相对误差小于±7%,相对标准偏差在3.11%~6.27%之间(n=11),铌钽的检出限分别为0.04μg/g和0.03μg/g,相比于碱熔法检出限0.33μg/g具有明显优势,可以准确测定地球化学勘查样品中的铌钽。  相似文献   

6.
海泡石是一种纤维状含水的富镁硅酸盐黏土矿,其中的稀土元素含量在1×10~(-7)~1×10~(-5)之间,目前还没有建立海泡石中稀土元素的国家标准分析方法。测定岩石中的稀土元素主要是采用电感耦合等离子体质谱法(ICP-MS),样品前处理一般采用封闭溶矿和碱熔,但这两种处理方法耗时较长,效率不高。本文通过比较硝酸-氢氟酸-过氧化氢、硝酸-氢氟酸、硝酸-过氧化氢三种样品前处理方法,确定使用硝酸-氢氟酸溶矿,然后进行微波消解同时赶去氢氟酸,避免氢氟酸与稀土元素生成难溶的氟化物,再采用ICP-MS法测定15种稀土元素的含量。由于海泡石中的镁含量较高,为降低基体效应,以~(103)Rh和~(185)Re作内标补偿基体效应和校正灵敏度漂移,各元素测定值的准确性显著提高,回收率为91. 2%~110. 9%,检出限为0. 002~0. 011μg/L,精密度≤2. 79%。本方法与封闭酸溶ICP-MS法的分析结果吻合较好,且用酸量少(7 mL),溶矿效率高(1 h),检出限更低。  相似文献   

7.
利用电感耦合等离子体质谱法(ICP-MS)测定植物样品中微量元素的关键技术是消除植物样品的有机基体效应,本文通过预处理方法中的酸消解体系、称样量和消解方式消除其影响。以国家标准物质灌木枝叶组合样(GBW07603)为材料进行研究,对比分析了硝酸-过氧化氢、硝酸-氢氟酸、硝酸-氢氟酸-过氧化氢3种酸溶体系的消解效果,以确定最佳酸溶体系,进而定量研究2种称样量(50 mg和100 mg)和3种消解方式(密封高压二次消解、密封高压一次消解、微波消解)的消解效果,并以In作为内标采用ICP-MS测定微量元素含量。结果表明:硝酸-氢氟酸-过氧化氢酸溶体系的消解效果最好;50 mg的测定值更接近于参考值;微波消解法的测定值明显偏低,而密封高压二次消解法是灌木枝叶样品预处理的有效方法。  相似文献   

8.
为了适应地质找矿和地质大普查工作对矿样测定速度和正确度的要求,对钼矿样品中的钼的测定方法进行试验,探讨在敞开体系中用盐酸+硝酸+氢氟酸+高氯酸的四酸溶矿体系消解钼矿样品,使用电感耦合等离子发射光谱仪(ICP-AES)测定钼的方法。  相似文献   

9.
微波酸溶消解方法是测定固体废物中金属元素最主要的前处理方法,消解时使用不同的酸体系对测定结果有较大的影响。本文以国家土壤标准样品、固体废物标准样品和固体废物实际样品为材料,比较了在硝酸-盐酸、硝酸-氢氟酸、硝酸-盐酸-双氧水、硝酸-盐酸-氢氟酸-双氧水4种酸体系下,16种金属元素测定结果的差异以及在硝酸-盐酸和硝酸-盐酸-氢氟酸-双氧水酸体系下各元素的精密度和准确度。研究表明:一些土壤基体中加入氢氟酸能使Mo和Sb的回收率提高40%左右,固体废物样品中只有Sb的回收率能提高33%~50%。对于含氢氟酸的酸消解体系,改变硝酸和盐酸的比例,其测定结果没有明显差异;对于元素含量相差悬殊的铬渣样品,由于空间电荷效应,高浓度的Cr对V的测定有抑制作用。从方法的准确度和精密度来看,硝酸-氢氟酸-盐酸-双氧水的消解效果最好。  相似文献   

10.
电感耦合等离子体质谱法(ICP-MS)测定大批量地质样品中的稀土和钴铪铟锰铌钽铊铬镉镓锗钒锡等金属元素,主要采用三酸或四酸溶解样品。由于地质样品组分复杂,稀土等金属元素含量低,各元素性质差异大,三酸或四酸溶样经常出现易挥发元素如钒铬镉镓锡的测定结果不稳定、镧铈镨钕等稀土元素溶解不完全的问题。本文在盐酸-硝酸-氢氟酸-高氯酸四酸基础上引入硫酸,形成盐酸-硝酸-氢氟酸-高氯酸-硫酸五酸溶样体系,用于水系沉积物、土壤和岩石等不同类型地质样品的一次敞口溶解,采用在线加入~(185)Re和~(103)Rh内标方式,建立了应用ICP-MS同时测定稀土等28种金属元素的方法。钒铬镉镓锡元素的准确度提高了1.4%~14.6%,镧和铈元素的准确度提高了0.2%~8.9%。该方法应用于分析水系沉积物、土壤、岩石标准物质(分别为GBW07301a、GBW07408、GBW07107),其测定值与认定值相一致,相对标准偏差(RSD)为1.14%~9.84%,准确度(△lgC)均≤0.1。该方法分析过程较简单,结果准确可靠,可满足测定大批量地质样品中稀土和钴铪铟锰铌钽等金属元素含量的要求。  相似文献   

11.
采用HNO3-HClO4-HF常压消解、HNO3-H2O2-HF高压密闭消解、HNO3-H2O2微波消解,干法灰化后残渣用HNO3-HF-HClO4溶解等四种方法对植物样品进行前处理,使用电感耦合等离子体质谱(ICP-MS)对植物样品中的27种元素进行定量分析,探讨了不同前处理方法对ICP-MS测定植物样品中微量元素的影响。分析结果表明: HNO3-HClO4-HF常压消解使用大量试剂,污染环境,造成空白值高;在常压体系中HClO4的加入能提高样品的消解效率,但赶酸不完全,会造成复合离子对钒和砷的干扰;干法灰化过程中某些元素(硼、汞等)会损失;常压消解和高压密闭消解中加入HF能有效地提高铍、稀土、钇、钛、锑、铀等元素的回收率,但在蒸干赶HF的过程中,会造成硼和汞的损失,并且钢套的生锈会造成铬、镍空白值高。尽管没有一种方法能适用于所有元素的分析,但相比较而言,HNO3-H2O2微波消解体系操作简单,大部分元素(除铍、钛、锑、铋、稀土)能得到满意的结果,精密度(RSD)均小于10%(n=10),相对误差(RE)为-4.6%~13.6%。  相似文献   

12.
The lack of analytical techniques for halogens in geological materials is mainly due to the loss of analytes during sample preparation. This study describes a rapid bulk rock digestion method (NH4F digestion) for determination of the abundances of Cl, Br and I in geological materials by SF-ICP-MS. During high temperature (200–240 °C) digestion, NH3 released from the decomposition of molten NH4F can effectively prevent the loss of halogens released from geological samples. Chlorine, Br and I were not lost during NH4F digestion at 220 °C for 0.25–6 h. The limits of quantitation for NH4F digestion were 2.8, 0.018 and 0.003 μg g-1 Cl, Br and I, respectively. Most results for halogens in geological reference materials by NH4F digestion were in agreement with their certified values, confirming that the high-performance rapid bulk rock NH4F digestion has sufficient digestion capability to extract Cl, Br and I from rocks, sediments and soils. In comparison, results obtained following acid digestion showed that HNO3 + HF digestion could effectively extract Br and I from soil and sediment samples, and that HNO3 acid digestion is only suitable to use for the determination of Br and I in soil samples.  相似文献   

13.
Complete dissolution is essential to obtain accurate analytical results for geological samples. Felsic rocks are known to be very difficult to dissolve because of the presence of refractory minerals such as zircon. In this study, we undertook a systematic evaluation of the effect of the HF/HNO3 ratio, digestion time, digestion temperature, digested test portion mass and the presence of insoluble fluorides on analytical results for the felsic rock GSP‐2 using high‐pressure HF and HF/HNO3 digestion. Digestion in mixtures of HF and HNO3 acids is a commonly used method of dissolution for geological samples. However, our results clearly indicate that adding HNO3 inhibited the digestion capabilities of HF for refractory minerals such as zircon. It took 8–12 hr for Zr to be completely recovered in GSP‐2 at 190 °C, whereas it needed about 36 and 72 hr at 160 and 140 °C, respectively. White precipitates were observed in the final solution for test portion mass > 100 mg, irrespective of which of the five different digestion solutions was used (1 ml HF, 2 ml HF, 1 ml HF + 0.5 ml HNO3, 1 ml HF + 1 ml HNO3 and 1.5 ml HF + 1.5 ml HNO3). Environmental scanning electron microscopy showed that these precipitates were mainly composed of AlF3. Instead of further HCl, HNO3 or HClO4 attack, we propose that using ultra‐fine samples and a small sample size is a good way to avoid the formation of insoluble residues (e.g., fluorides). To further investigate the precision and accuracy of the proposed method (using HF alone as the digestion solution during the first acid attack step), a suite of silicate rock reference materials was analysed. Most of the results were found to be in reasonable agreement with the reference values, with a relative error of < 10%.  相似文献   

14.
Trace elements from samples of bauxite deposits can provide useful information relevant to the exploration of the ore‐forming process. Sample digestion is a fundamental and critical stage in the process of geochemical analysis, which enables the acquisition of accurate trace element data by ICP‐MS. However, the conventional bomb digestion method with HF/HNO3 results in a significant loss of rare earth elements (REEs) due to the formation of insoluble AlF3 precipitates during the digestion of bauxite samples. In this study, the digestion capability of the following methods was investigated: (a) ‘Mg‐addition’ bomb digestion, (b) NH4HF2 open vessel digestion and (c) NH4F open vessel digestion. ‘Mg‐addition’ bomb digestion can effectively suppress the formation of AlF3 and simultaneously ensure the complete decomposition of resistant minerals in bauxite samples. The addition of MgO to the bauxite samples resulted in (Mg + Ca)/Al ratios ≥ 1. However, adding a large amount of MgO leads to significant blank contamination for some transition elements (V, Cr, Ni and Zn). The NH4HF2 or NH4F open vessel digestion methods can also completely digest resistant minerals in bauxite samples in a short period of time (5 hr). Unlike conventional bomb digestion with HF/HNO3, the white precipitates and the semi‐transparent gels present in the NH4HF2 and NH4F digestion methods could be efficiently dissolved by evaporation with HClO4. Based on these three optimised digestion methods, thirty‐seven trace elements including REEs in ten bauxite reference materials (RMs) were determined by ICP‐MS. The data obtained showed excellent inter‐method reproducibility (agreement within 5% for REEs). The relative standard deviation (% RSD) for most elements was < 6%. The concentrations of trace elements in the ten bauxite RMs showed agreement with the limited certified (Li, V, Cr, Cu, Zn, Ga, Sr, Zr and Pb) and information values (Co, Ba, Ce and Hf) available. New trace element data for the ten RMs are provided, some of which for the first time.  相似文献   

15.
微波消解-电感耦合等离子体质谱法测定煤中的硼   总被引:3,自引:3,他引:0  
煤中硼的准确测定对于研究成煤的沉积环境具有重要意义。微波消解-电感耦合等离子体质谱(ICP-MS)可以有效地测定煤中的大部分微量元素,但由于硼易挥发等特殊的物理化学性质,致使硼的测定过程较为繁琐,测试结果不够准确。本文对微波消解ICP-MS测定煤中硼含量的分析方法进行了改进。样品中加入磷酸、硝酸和氢氟酸,用微波消解仪消解完全,置于电热板加热赶酸完毕后用硝酸提取。硼的卤化物易挥发,磷酸的加入使硼与磷酸结合生成难挥发的稳定络合物,起到了固硼的作用。ICP-MS测定中采用铍作为内标,通过在线加入的方式有效地补偿了基体效应产生的影响;用稀氨水冲洗进样系统,很好地降低了硼的记忆效应;选择高分辨率模式来测定,避免了12C和40Ar4+等质谱峰的干扰。方法的仪器检出限(0.22ng/mL)和方法检出限(0.34 ng/mL)较低,方法精密度(RSD)小于0.6%,灵敏度高,且测定标准样品的准确度良好。该方法简单快速,适用于批量分析煤样中硼的含量。  相似文献   

16.
Rare earth elements (REEs) are very important to technological development as well as to geochemical and environmental studies. In this work, hydrofluoric acid (HF) was replaced by condensed phosphoric acid (CPA) in the digestion of geological samples, and the quantification of REEs was performed by inductively coupled plasma‐optical emission spectrometry (ICP‐OES). Six international reference materials (RMs), named DC86318, CGL 111, CGL 124, CGL 126, OKA‐2 and COQ‐1 and three Brazilian ore samples, named Araxá, Catalão and Pitinga were analysed. Only zircon and xenotime, which are potential REE‐bearing minerals, were not completely dissolved. Nevertheless, no REE associated with zircon was detected. The investigated digestion method presented many advantages: It was relatively fast (3 h), avoided fluoride precipitation, it was less hazardous because handling diluted H3PO4 is safer than HF, NH4F or NH4HF2 aqueous solutions, it preserved the quartz fittings of the measurement equipment and the final solution contained lower levels of total dissolved solids than those produced by the fusion method.  相似文献   

17.
微波密闭消解-等离子体质谱法测定岩石样品中的稀土元素   总被引:31,自引:14,他引:17  
马英军  刘丛强 《岩矿测试》1999,18(3):189-192
建立了有微波密封HF+HNO3消解样品,等离子体质谱测定岩石样品中15个稀土元素的分方法。用该方法对国内外岩石标准品进行测定,结果表明稀土元素的测定值与标准值之间的相对偏差小于5%,检出限为(0.1-0.9)*10^-9,多次测定结果的相对标准偏差在1.3%-5.2%。各类实际岩石样品中稀土元素的分析结果均与地质规律相符,进一步证明了方法的可靠性。  相似文献   

18.
分析地质样品中稀土元素的含量,现有的方法都受到基体干扰和共存元素干扰,电感耦合等离子体质谱(ICP-MS)已在痕量元素分析中得到广泛应用,通过条件优化可准确测定稀土元素。本文建立了ICP-MS同时测定铁矿石中钇镧铈镨钕钐铕钆铽镝钬铒铥镱镥15个稀土元素的方法,样品用盐酸、硝酸和氢氟酸高温密闭消解,消解完全后转移定容,在线加入103Rh、115In、185Re内标液进行测定,方法回收率为95%~104%,精密度(RSD)≤3.5%。对12个国家24个代表性主产区进口的铁矿石样品进行检测,分析其稀土元素的配分模式特征为右倾型轻稀土富集,现阶段的进口铁矿粉多为多产区复合配矿。本方法较其他传统方法大幅降低能耗,提高了分析效率,初步探讨的稀土元素丰度特征可为研究主产区铁矿石的矿床成因、提高我国烧结球团矿的加工工艺提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号