首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The thermal histories of Martian meteorite are important for the interpretation of petrologic, geochemical, geochronological, and paleomagnetic constraints that they provide on the evolution of Mars. In this paper, we quantify 40Ar/39Ar ages and Ar diffusion kinetics of Martian meteorites Allan Hills (ALH) 84001, Nakhla, and Miller Range (MIL) 03346. We constrain the thermal history of each meteorite and discuss the resulting implications for their petrology, paleomagnetism, and geochronology. Maskelynite in ALH 84001 yields a 40Ar/39Ar isochron age of 4163 ± 35 Ma, which is indistinguishable from recent Pb-Pb (Bouvier et al., 2009a) and Lu-Hf ages (Lapen et al., 2010). The high precision of this result arises from clear resolution of a reproducible trapped 40Ar/36Ar component in maskelynite in ALH 84001 (40Ar/36Ar = 632 ± 90). The maskelynite 40Ar/39Ar age predates the Late Heavy Bombardment and likely represents the time at which the original natural remanent magnetization (NRM) component observed in ALH 84001 was acquired. Nakhla and MIL 03346 yield 40Ar/39Ar isochron ages of 1332 ± 24 and 1339 ± 8 Ma, respectively, which we interpret to date crystallization. Multi-phase, multi-domain diffusion models constrained by the observed Ar diffusion kinetics and 40Ar/39Ar age spectra suggest that localized regions within both ALH 84001 and Nakhla were intensely heated for brief durations during shock events at 1158 ± 110 and 913 ± 9 Ma, respectively. These ages may date the marginal melting of pyroxene in each rock, mobilization of carbonates and maskelynite in ALH 84001, and NRM overprints observed in ALH 84001. The inferred peak temperatures of the shock heating events (>1400 °C) are sufficient to mobilize Ar, Sr, and Pb in constituent minerals, which may explain some of the dispersion observed in 40Ar/39Ar, Rb-Sr, and U-Th-Pb data toward ages younger than ∼4.1 Ga. The data also place conservative upper bounds on the long-duration residence temperatures of the ALH 84001 and Nakhla protolith to be  °C and  °C over the last ∼4.16 Ga and ∼1.35 Ga, respectively. MIL 03346 has apparently not experienced significant shock-heating since it crystallized, consistent with the fact that various chronometers yield concordant ages.  相似文献   

2.
火星生命研究的进展与前景   总被引:3,自引:0,他引:3  
关于火星是否存在或曾经存在生命的争论由来已久。有人以ALH84001火星陨石新鲜破裂面上的大量碳酸盐小球体和多环芳香烃(PAHs)为主要依据,推论火星至少在13~36亿 aBP前很可能有生命形态存在。然而,很多人认为ALH84001陨石的各种特性可以是非生物成因的。由于地球上的生物在超过115℃的温度下很难存活(火星可与之类比),争论的焦点逐渐集中在碳酸盐球体的形成温度上。也有研究者关注该陨石上有机物质的来源问题。对ALH84001陨石的综合学科研究提出了互相矛盾的证据。综述了自1996年以来在国外各种主要期刊上发表的关于 ALH84001陨石与火星生命的研究成果(也包括了一些对其他火星陨石的研究),认为目前尚不能断言火星生命存在与否。对火星继续深入探索以获取进一步的证据是十分必要的。以美国国家航空和宇航局(NASA)Odys sey宇宙飞船起始的火星探测计划将引发新一轮火星生命研究的热潮。  相似文献   

3.
Radiometric age data for shergottites yield ages of 4.0 Ga and 180-575 Ma; the interpretation of these ages has been, and remains, a subject of debate. Here, we present new 39Ar-40Ar laser probe data on lherzolitic shergottites Allan Hills (ALH) 77005 and Northwest Africa (NWA) 1950. These two meteorites are genetically related, but display very different degrees of shock damage. On a plot of 40Ar/36Ar versus 39Ar/36Ar, the more strongly shocked ALH 77005 (45-55 GPa) does not yield an array of values indicating an isochron, but the data are highly scattered with the shock melts yielding 40Ar/36Ar ratios of 1600-2026. Apparent ages calculated from these extractions range from 374-8183 Ma, with 50% of the data, particularly from the shock melts, yielding impossibly old ages (>4.567 Ga). On the same plot, extractions from igneous minerals in the less shocked NWA 1950 (30-44 GPa) yield a fitted age of 382 ± 36 Ma. Argon extractions from the shock melts are well distinguished from minerals, with the melts exhibiting the highest 40Ar/36Ar ratios (1260-1488) and the oldest apparent ages. Laser step heating was also performed on maskelynite separates from NWA 1950 yielding ages of 1000 Ma at the lowest release temperatures, and ages of 360 and 362 Ma at higher temperature steps. Stepped heating data from previous studies have yielded ages of 500 and 700 Ma to 1.7 Ga for ALH 77005 maskelynite separates. If the ages obtained from igneous minerals represent undegassed argon from an ancient (4.0 Ga) rock, then the ages are expected to anticorrelate with the degree of shock heating. The data do not support this inference. Our data support young crystallization ages for minerals and Martian atmosphere as the origin of excess 40Ar in the shock melts.The shock features of shergottites are also reviewed in the context of what is known of the geologic history of the Martian surface through remote observation. The oldest, most heavily cratered surfaces of Mars are thought to be ?4.0 Ga; we contend that ancient rocks from Mars (Noachian >3.5 Ga) are likely to record multiple impact events reflecting megaregolith formation and the cumulative effects of erosion and aqueous alteration occurring during or since that era. Young rocks (Late Amazonian, <0.6 Ga) should record a relatively simple history of emplacement and ejection from the near surface. We show that although shergottites are strongly shocked, they are relatively pristine crystalline igneous rocks and not pervasively altered breccias. The petrography of shergottites is at odds with an ancient age interpretation. A model in which young coherent rocks are preferentially sampled by hypervelocity impact because of material strength is considered highly plausible.  相似文献   

4.
Oxygen isotope ratios of merrillite and chlorapatite in the Martian meteorites ALH84001 and Los Angeles have been measured by ion microprobe in multicollector mode. δ18O values of phosphate minerals measured in situ range from ∼3 to 6‰, and are similar to Martian meteorite whole-rock values, as well as the δ18O of igneous phosphate on Earth. These results suggest that the primary, abiotic, igneous phosphate reservoir on Mars is similar in oxygen isotopic composition to the basaltic phosphate reservoir on Earth. This is an important first step in the characterization of Martian phosphate reservoirs for the use of δ18O of phosphate minerals as a biomarker for life on Mars. Cumulative textural, major-element, and isotopic evidence presented here suggest a primary, igneous origin for the phosphates in Los Angeles and ALH84001; textural and chemical evidence suggests that phosphates in ALH84001 were subsequently shock-melted in a later event.  相似文献   

5.
Recent analyses of the carbonate globules present in the Martian meteorite ALH84001 have detected polycyclic aromatic hydrocarbons (PAHs) at the ppm level (McKay et al., 1996). The distribution of PAHs observed in ALH84001 was interpreted as being inconsistent with a terrestrial origin and were claimed to be indigenous to the meteorite, perhaps derived from an ancient martian biota. We have examined PAHs in the Antarctic shergottite EETA79001, which is also considered to be from Mars, as well as several Antarctic carbonaceous chondrites. We have found that many of the same PAHs detected in the ALH84001 carbonate globules are present in Antarctic carbonaceous chondrites and in both the matrix and carbonate (druse) component of EETA79001. We also investigated PAHs in polar ice and found that carbonate is an effective scavenger of PAHs in ice meltwater. Moreover, the distribution of PAHs in the carbonate extract of Antarctic Allan Hills ice is remarkably similar to that found in both EETA79001 and ALH84001. The reported presence of L-amino acids of apparent terrestrial origin in the EETA79001 druse material (McDonald and Bada, 1995) suggests that this meteorite is contaminated with terrestrial organics probably derived from Antarctic ice meltwater that had percolated through the meteorite. Our data suggests that the PAHs observed in both ALH84001 and EETA79001 are derived from either the exogenous delivery of organics to Mars or extraterrestrial and terrestrial PAHs present in the ice meltwater or, more likely, from a mixture of these sources. It would appear that PAHs are not useful biomarkers in the search for extinct or extant life on Mars.  相似文献   

6.
New petrologic and bulk geochemical data for the SNC-related (Martian) meteorite ALH84001 suggest a relatively simple igneous history overprinted by complex shock and hydrothermal processes. ALH84001 is an igneous orthopyroxene cumulate containing penetrative shock deformation textures and a few percent secondary extraterrestrial carbonates. Rare earth element (REE) patterns for several splits of the meteorite reveal substantial heterogeneity in REE abundances and significant fractionation of the REEs between crushed and uncrushed domains within the meteorite. Complex zoning in carbonates indicates nonequilibrium processes were involved in their formation, suggesting that CO2-rich fluids of variable composition infiltrated the rock while on Mars. We interpret petrographic textures to be consistent with an inorganic origin for the carbonate involving dissolution-replacement reactions between CO2-charged fluids and feldspathic glass in the meteorite. Carbonate formation clearly postdated processes that last redistributed the REE in the meteorite.  相似文献   

7.
雄村铜金矿Ⅱ号矿体在2007-2008年取得了重大的找矿突破,详细的地质编录成果表明,矿体同样受含眼球状石英斑晶的角闪石英闪长玢岩和角闪石英闪长玢岩控制.含眼球状石英斑晶的角闪石英闪长玢岩和角闪石英闪长玢岩的锆石U-Pb年龄已经确定(164~177 Ma),因此,雄村铜金矿不同地质体的云母类、长石类矿物Ar-Ar同位素年龄的测定显得尤为关键.文章通过对穿切I号矿体的黑云母花岗闪长岩、云煌岩脉的黑云母Ar-Ar同位素测年,结合其他研究者的成果,得到一组十分重要的年龄数据.穿插矿体的黑云母花岗闪长岩中的黑云母(样号6187-335)坪年龄(46.96±0.42)Ma,穿插矿体的无矿化的云煌岩(5053-324.4)(Cu含量0.0551%,Au含量0.034 g/t,Ag0.6 g/t)中的黑云母给出了一个较好的似坪年龄,加权平均年龄为(49.59±0.58)Ma.结合其他研究者测定的中侏罗世侵位的角闪石英闪长玢岩(不含矿)[锆石U-Pb年龄为(177.1±2.0)Ma]中黑云母的At-At同位素年龄为(48.57±0.31)Ma;含矿凝灰岩围岩[锆石U-Pb年龄为(176±5)Ma,MS3VD=0.63}的蚀变绢云母Ar-Ar年龄为(47.07±0.30)Ma;似伟晶岩中长石的At-At年龄为(47.62±0.7)Ma,认为不同形成时代、不同产出空间、不同矿化程度的地质体的云母类、长石类矿物的Ar-Ar同位素年龄的一致性,反映了后期岩浆热事件对中侏罗世早期形成的地质体和矿体的黑云母氩同位素体系产生了较强的扰动或置换.谢通门大岩基黑云母花岗闪长岩的侵位致使各地质体发生显著的退变质,形成典型的角岩化带,这种退变质的时限在46-48 Ma之间的始新世lutetian期,进而认为各地质体中云母类矿物的~(40)Ar/~(39)Ar同位素年龄不能作为成矿年龄.  相似文献   

8.
A simple synthesis of various forms of calcium carbonate with spherical and 'floral' morphologies is reported. Vaterite formation occurs at approximately 25 degrees C, aragonite at approximately 70 degrees C and calcite at about approximately 80 degrees C. These are produced when CO2 is reacted with an aqueous solution of calcium chloride in the presence of ammonia. These conditions may have existed at the surface of Mars in the past, leading us to conclude that such mineral formations may be common there. Although the initial phases are modified over time with changing temperature and pressure conditions, they still influence the final morphology of the carbonates observed. A comparison of these structures with those found in the Martian meteorite ALH84001 suggests, but does not confirm, a non-biogenic origin for the ALH84001 carbonates.  相似文献   

9.
《Geochimica et cosmochimica acta》1999,63(11-12):1865-1875
Noble metals, Mo, W, and 24 other elements were determined in six SNC meteorites of presumably Martian origin. Based on element correlations, representative siderophile element concentrations for the silicate mantle of Mars were inferred. From a comparison with experimentally determined metal/silicate partition coefficients of the moderately siderophile elements: Fe, Ni, Co, W, Mo, and Ga, it is concluded that equilibrium between core forming metal and silicates in Mars has occurred at high temperatures (around 2200°C) and low pressures (<1 GPa). This suggests that metal segregation occurred concurrently with rapid accretion of Mars, which is consistent with the inference from excess 182W in Martian meteorites (Lee and Halliday, 1997). Concentrations of Ir, Os, Ru, Pt, and Au in the analyzed Martian meteorites, except ALH84001, are at a level of approximately 10−2–10−3 × CI. The comparatively high abundances of noble metals in Martian meteorites require the addition of chondritic material after core formation. The similarity in Au/La and Pt/Ca ratios between ALH84001 and the other Martian meteorites suggests crystallization of ALH84001 after complete accretion of Mars.  相似文献   

10.
Spatially resolved argon isotope measurements have been performed on neutron-irradiated samples of two Martian basalts (Los Angeles and Zagami) and two Martian olivine-phyric basalts (Dar al Gani (DaG) 476 and North West Africa (NWA) 1068). With a ∼50 μm diameter focused infrared laser beam, it has been possible to distinguish between argon isotopic signatures from host rock (matrix) minerals and localized shock melt products (pockets and veins). The concentrations of argon in analyzed phases from all four meteorites have been quantified using the measured J values, 40Ar/39Ar ratios and K2O wt% in each phase. Melt pockets contain, on average, 10 times more gas (7-24 ppb 40Ar) than shock veins and matrix minerals (0.3-3 ppb 40Ar). The 40Ar/36Ar ratio of the Martian atmosphere, estimated from melt pocket argon extractions corrected for cosmogenic 36Ar, is: Los Angeles (∼1852), Zagami (∼1744) and NWA 1068 (∼1403). In addition, Los Angeles shows evidence for variable mixing of two distinct trapped noble gas reservoirs: (1) Martian atmosphere in melt pockets, and (2) a trapped component, possibly Martian interior (40Ar/36Ar: 480-490) in matrix minerals. Average apparent 40Ar/39Ar ages determined for matrix minerals in the four analyzed meteorites are 1290 Ma (Los Angeles), 692 Ma (Zagami), 515 Ma (NWA 1068) and 1427 Ma (DaG 476). These 40Ar/39Ar apparent ages are substantially older than the ∼170-474 Ma radiometric ages given by other isotope dating techniques and reveal the presence of trapped 40Ar. Cosmic ray exposure (CRE) ages were measured using spallogenic 36Ar and 38Ar production. Los Angeles (3.1 ± 0.2 Ma), Zagami (2.9 ± 0.4 Ma) and NWA 1068 (2.0 ± 0.5 Ma) yielded ages within the range of previous determinations. DaG 476, however, yielded a young CRE age (0.7 ± 0.25 Ma), attributed to terrestrial alteration. The high spatial variation of argon indicates that the incorporation of Martian atmospheric argon into near-surface rocks is controlled by localized glass-bearing melts produced by shock processes. In particular, the larger (mm-size) melt pockets contain near end-member Martian atmospheric argon. Based on petrography, composition and argon isotopic data we conclude that the investigated melt pockets formed by localized in situ shock melting associated with ejection. Three processes may have led to atmosphere incorporation: (1) argon implantation due to atmospheric shock front collision with the Martian surface, (2) transformation of an atmosphere-filled cavity into a localized melt zone, and (3) shock implantation of atmosphere trapped in cracks, pores and fissures.  相似文献   

11.
We report 39Ar-40Ar ages of whole rock (WR) and plagioclase and pyroxene mineral separates of nakhlites MIL 03346 and Y-000593, and of WR samples of nakhlites NWA 998 and Nakhla. All age spectra are complex and indicate variable degrees of 39Ar recoil and variable amounts of trapped 40Ar in the samples. Thus, we examine possible Ar-Ar ages in several ways. From consideration of both limited plateau ages and isochron ages, we prefer Ar-Ar ages of NWA 998 = 1334 ± 11 Ma, MIL 03346 = 1368 ± 83 Ma (mesostasis) and 1334 ± 54 Ma (pyroxene), Y-000593 = 1367 ± 7 Ma, and Nakhla = 1357 ± 11 Ma, (2σ errors). For NWA 998 and MIL 03346 the Ar-Ar ages are within uncertainties of preliminary Rb-Sr isochron ages reported in the literature. These Ar-Ar ages for Y-000593 and Nakhla are several Ma older than Sm-Nd ages reported in the literature. We conclude that the major factor in producing Ar-Ar ages slightly too old is the presence of small amounts of trapped martian or terrestrial 40Ar on weathered grain surfaces that was degassed along with the first several percent of 39Ar. A total K-40Ar isochron for WR and mineral data from five nakhlites analyzed by us, plus Lafayette data in the literature, gives an isochron age of 1325 ± 18 Ma (2σ). We emphasize the precision of this isochron over the value of the isochron age. Our Ar-Ar data are consistent with a common formation age for nakhlites. The cosmic-ray exposure (CRE) age for NWA 998 of ∼12 Ma is also similar to CRE ages for other nakhlites.  相似文献   

12.
The magnetites and sulfides located in the rims of carbonate globules in the Martian meteorite ALH84001 have been claimed as evidence of past life on Mars. Here, we consider the possibility that the rims were formed by dissolution and reprecipitation of the primary carbonate by the action of water. To estimate the rate of these solution-precipitation reactions, a kinetic model of magnesite-siderite carbonate dissolution was applied and used to examine the physicochemical conditions under which these rims might have formed. The results indicate that the formation of the rims could have taken place in < 50 yr of exposure to small amounts of aqueous fluids at ambient temperatures. Plausible conditions pertaining to reactions under a hypothetical ancient Martian atmosphere (1 bar CO2), the modern Martian atmosphere (8 mbar CO2), and the present terrestrial atmosphere (0.35 mbar CO2) were explored to constrain the site of the process. The results indicated that such reactions likely occurred under the latter two conditions. The possibility of Antarctic weathering must be entertained, which, if correct, would imply that the plausibly biogenic minerals (single-domain magnetite of characteristic morphology and sulfide) reported from the rims may be the products of terrestrial microbial activity. This model is discussed in terms of the available isotope data and found to be compatible with the formation of ALH84001 rims. Particularly, anticorrelated variations of radiocarbon with δ13C indicate that carbonate in ALH84001 was affected by solution-precipitation reactions immediately after its initial fall (∼13,000 yr ago) and then again during its recent exposure prior to collection.  相似文献   

13.
Multiple lines of evidence show that the Rb-Sr, Sm-Nd, and Ar-Ar isotopic systems individually give robust crystallization ages for basaltic (or diabasic) shergottite Northwest Africa (NWA) 1460. In contrast to other shergottites, NWA 1460 exhibits minimal evidence of excess 40Ar, thus allowing an unambiguous determination of its Ar-Ar age. The concordant Rb-Sr, Sm-Nd, and Ar-Ar results for NWA 1460 define its crystallization age to be 346 ± 17 Ma (2σ). In combination with petrographic and trace element data for this specimen and paired meteorite NWA 480, these results strongly refute the suggestion by others that the shergottites are ∼4.1 Ga old. Current crystallization and cosmic-ray exposure (CRE) age data permit identification of a maximum of nine ejection events for Martian meteorites (numbering more than 50 unpaired specimens as of 2008) and plausibly as few as five such events. Although recent high resolution imaging of the Martian surface has identified limited areas of sparsely cratered terrains, the meteorite data suggest that either these areas are representative of larger areas from which the meteorites might come, or that the cratering chronology needs recalibration. Time-averaged 87Rb/86Sr = 0.16 for the mantle source of the parent magma of NWA 1460/480 over the ∼4.56 Ga age of the planet is consistent with previously estimated values for bulk silicate Mars in the range 0.13-0.16, and similar to values of ∼0.18 for the “lherzolitic” shergottites. Initial εNd for NWA 1460/480 at 350 ± 16 Ma ago was +10.6 ± 0.5, which implies a time-averaged 147Sm/144Nd of 0.217 in the Martian mantle prior to mafic melt extraction, similar to values of 0.211-0.216 for the “lherzolitic” shergottites. These time-averaged values do not imply a simple two-stage mantle/melt evolution, but must result from multiple episodes of melt extractions from the source regions. Much higher “late-stage” εNd values for the depleted shergottites imply similar processes carried to a greater degree. Thus, NWA 1460/480, the “lherzolitic” shergottites and perhaps EET 79001 give the best (albeit imperfect) estimate of the Sr- and Nd-isotopic characteristics of bulk silicate Mars.  相似文献   

14.
Using transmission electron microscopy (TEM), we have analyzed magnetite (Fe3O4) crystals acid-extracted from carbonate globules in Martian meteorite ALH84001. We studied 594 magnetites from ALH84001 and grouped them into three populations on the basis of morphology: 389 were irregularly shaped, 164 were elongated prisms, and 41 were whisker-like. As a possible terrestrial analog for the ALH84001 elongated prisms, we compared these magnetites with those produced by the terrestrial magnetotactic bacteria strain MV-1. By TEM again, we examined 206 magnetites recovered from strain MV-1 cells. Natural (Darwinian) selection in terrestrial magnetotactic bacteria appears to have resulted in the formation of intracellular magnetite crystals having the physical and chemical properties that optimize their magnetic moment. In this study, we describe six properties of magnetite produced by biologically controlled mechanisms (e.g., magnetotactic bacteria), properties that, collectively, are not observed in any known population of inorganic magnetites. These criteria can be used to distinguish one of the modes of origin for magnetites from samples with complex or unknown histories. Of the ALH84001 magnetites that we have examined, the elongated prismatic magnetite particles (similar to 27% of the total) are indistinguishable from the MV-1 magnetites in five of these six characteristics observed for biogenically controlled mineralization of magnetite crystals.  相似文献   

15.
Small, discoid globules and networks of magnesium-iron-calcium carbonates occur within impact-produced fracture zones in the ALH84001 Martian meteorite. Because these carbonates contain or are associated with the hydrocarbons, single-domain magnetite and iron-sulfide grains, and purported microfossils that collectively have been cited as evidence for ancient Martian life, it is critically important to understand their formation. Previous hypotheses for the origin of the carbonates involve either alteration of the rock by hydrothermal fluids at relatively low temperatures, or formation from a CO2-rich vapor at high temperatures. This paper explores an alternative mechanism–direct precipitation from a ponded evaporating brine infiltrating into fractures in the floor of an impact crater. Such a model can be reconciled with the observed carbonate compositional zoning and extreme stable-isotopic fractionations. If the carbonates formed in this manner, this removes a possible obstacle to the proposed existence of microbial remains in ALH84001; however, the cited evidence for life can be better explained by inorganic processes expected from brines in an evaporating alkaline lake, with an overprint of shock metamorphism and subsequent contamination by organic matter after falling to Earth.  相似文献   

16.
Detailed Rb-Sr and Sm-Nd isotopic analyses have been completed on the lherzolitic shergottites ALH77005 and LEW88516. ALH77005 yields a Rb-Sr age of 185 ± 11 Ma and a Sm-Nd age of 173 ± 6 Ma, whereas the Rb-Sr and Sm-Nd ages of LEW88516 are 183 ± 10 and 166 ± 16 Ma, respectively. The initial Sr isotopic composition of ALH77005 is 0.71026 ± 4, and the initial εNd value is +11.1 ± 0.2. These values are distinct from those of LEW88516, which has an initial Sr isotopic composition of 0.71052 ± 4 and an initial εNd value of +8.2 ± 0.6. Several of the mineral and whole rock leachates lie off the Rb-Sr and Sm-Nd isochrons, indicating that the isotopic systematics of the meteorites have been disturbed. The Sm-Nd isotopic compositions of the leachates appear to be mixtures of primary igneous phosphates and an alteration component with a low 143Nd/144Nd ratio that was probably added to the meteorites on Mars. Tie lines between leachate-residue pairs from LEW88516 mineral fractions and whole rocks have nearly identical slopes that correspond to Rb-Sr ages of 90 ± 1 Ma. This age may record a major shock event that fractionated Rb/Sr from lattice sites located on mineral grain boundaries. On the other hand, the leachates could contain secondary alteration products, and the parallel slopes of the tie lines could be coincidental.Nearly identical mineral modes, compositions, and ages suggest that these meteorites are very closely related. Nevertheless, their initial Sr and Nd isotopic compositions differ outside analytical uncertainty, requiring derivation from unique sources. Assimilation-fractional-crystallization models indicate that these two lherzolitic meteorites can only be related to a common parental magma, if the assimilant has a Sr/Nd ratio near 1 and a radiogenic Sr isotopic composition. Further constraints placed on the evolved component by the geochemical and isotopic systematics of the shergottite meteorite suite suggest that it (a) formed at ∼4.5 Ga, (b) has a high La/Yb ratio, (c) is an oxidant, and (d) is basaltic in composition or is strongly enriched in incompatible elements. The composition and isotopic systematics of the evolved component are unlike any evolved lunar or terrestrial igneous rocks. Its unusual geochemical and isotopic characteristics could reflect hydrous alteration of an evolved Martian crustal component or hydrous metasomatism within the Martian mantle.  相似文献   

17.
H isotope measurements of carbonate, phosphate, feldspathic and mafic glasses, and post-stishovite silica phase in the shergottites Zagami, Shergotty, SaU 005, DaG 476, ALHA 77005 and EETA 79001, as well as in Chassigny and ALH 84001, show that all these phases contain deuterium-enriched water of extraterrestrial origin. The minerals and glasses analyzed may contain an initial primary hydrogen component, but their isotopic composition was modified to varying degrees by three different processes: interaction with a fractionated exchangeable water reservoir on Mars, hydrogen devolatilization by impact melting, and terrestrial contamination. Positive correlations between δD and water abundance in feldspathic glass and post-stishovite silica in Zagami, Shergotty, and SaU 005 is indicative of mixing of a high δD component (3000-4000‰) and a less abundant, low δD component (∼0‰). The high δD component is primarily derived from the Martian exchangable reservoir, but may also have been influenced by isotopic fractionation associated with shock-induced hydrogen loss. The low δD component is either a terrestrial contaminant or a primary “magmatic” component. The negative correlation between δD and water abundances in mafic and feldspathic glasses in ALH 84001, ALHA 77005, and EETA 79001 is consistent with the addition of a low δD terrestrial contaminant to a less abundant high-deuterium Martian component. The low δD of magmatic glass in melt inclusions suggests that the δD of Martian parent magma was low and that the initial H isotope signature of Mars may be similar to that of Earth.  相似文献   

18.
龚松林  陈能松  刘嵘  杨勇 《现代地质》2007,21(2):226-231
应用阶段加热脱气技术测定了北大别黄土岭麻粒岩的黑云母和共存花岗岩岩体中斜长角闪岩包体角闪石的Ar-Ar年龄。角闪石给出的坪年龄为(124.9±4.6) Ma,与区域上早白垩世120~130 Ma的变质-岩浆事件年龄相一致。黑云母给出的坪年龄为(176.9±0.8) Ma,年龄大于Ar封闭温度较高的角闪石的年龄,这表明黄土岭麻粒岩黑云母中含有过剩Ar。较低温度和富流体环境生长的晚世代黑云母是过剩Ar的主要载体。因此,在应用Ar-Ar热年代计重塑多成因同类含钾矿物的岩石地质体的冷却速率时,应用激光探针对代表峰期世代矿物进行原位测定应是正确的选择。  相似文献   

19.
华南某些含钨花岗岩的K-Ar年龄   总被引:3,自引:0,他引:3       下载免费PDF全文
测定了华南某些与钨矿床有关的花岗岩和钨矿脉样品的K—Ar年龄,共37件。这些花岗岩的表观年龄自183Ma至99.5Ma(年龄值为715Ma的岩体与钨矿无关),其中68%以上样品值域在150Ma左右。~(40)Ar/~(36)Ar—40K/~(36)Ar等时线图解给出的等时年龄为132.1Ma,说明这些花岗岩在形成时代上属中侏罗到早白垩世。我们发现在华南钨矿成矿域内,有一个从中心带向外年龄逐渐变青的趋势。用矿脉中和矿脉侧云英岩中云母类矿物所做的K—Ar定年得到的矿化作用的年龄,与各自相关的花岗岩的年龄非常接近,以至于很难用K—Ar定年法加以区别。即成矿作用和成岩作用有一种准同期性。等时线对应的~(40)Ar/~(36)Ar初始比高于现今大气Ar的比值,表明花岗岩在固结时有继承Ar存在。  相似文献   

20.
A New Martian Meteorite from Antarctica:Grove Mountains (GRV) 020090   总被引:15,自引:0,他引:15  
Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered by a black and glazy fusion crust. It has two distinct textural regions. The interstitial region is composed of euhedral grains of olivine, pigeonite, and anhedral interstitial maskelynite, with minor chromite, augite, phosphates and troilite. The poikilitic region consists of three clasts of pyroxenes, each of which has a pigeonite core and an augite rim. A few grains of subhedral to rounded olivine and euhedral chromite are enclosed in the pyroxene oikocrysts. GRV 020090 is classified as a new member of lherzolitic shergottites based on the modal composition and mineral chemistry. This work will shed light on the composition of Martian crust and magmatism on the Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号