首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Longquan–Shan fault and the Huya fault are two major neighboring faults of the Longmen–Shan fault zone where the 12 May 2008 Wenchuan earthquake (Mw 7.9) occurred. To study the influence of the Wenchuan event on these two active faults, we calculate changes of Coulomb stress on the Longquan–Shan fault and the Huya fault caused by the Wenchuan mainshock. Our results indicate that the Coulomb stress in the northern section (Zone A) of the Longquan–Shan fault is increased by 0.07–0.10 bars, that in the middle section (Zone B) by 0.04–0.11 bars, and that in the southern section (Zone C) shows almost no change. For the Huya fault, the Coulomb stress is decreased by 0.01–0.03 bars in the northern section (Zone A), 0.10–0.35 bars in the middle section (Zone B), and nearly 0.5 bars in the southern section (Zone C). The epicenter distribution of small earthquakes (ML  1.5) on the Longquan–Shan fault and the Huya fault after the Wenchuan earthquake is consistent with the distribution of the Coulomb stress change. This implies that the Wenchuan earthquake may have triggered small events on the Longquan–Shan fault, but inhibited those on the Huya fault. We then use the rate/state friction law to calculate the occurrence probability of future earthquakes in the study region for the next decade. They include the distribution of b-values, magnitude of completeness (Mc), the background seismicity rate, a value of n and the duration for the transient effect (ta) in the study region. We also estimate the earthquake occurrence probabilities on the neighboring faults after the Wenchuan earthquake. Our results show that, the occurrence probability of future earthquakes in the Longquan–Shan has a slight increase, being 7% for M  5.0 shocks during the next decade, but the earthquake probability in the Huya region is reduced obviously, being 5–20%, 7–26% and 3–9% for M  5.0 shocks during the next decade in sections A, B and C of the Huya fault, respectively.  相似文献   

2.
Palaeoseismological and morphotectonic analyses enable us to define a 400-m-wide actively deformed zone associated with the active Eliki normal fault, central Greece, bounded on the south by a second-order fault and on the north by a composite and prominent fault scarp. This scarp is further analysed by trenching. Based on colluvium stratigraphy, displacement of distinct horizons and deposition of sedimentary layers, three faulting events have been identified along four fault strands affecting unconsolidated sediments in the trench. The two younger events, with throws of 0.93 and 1.37 m, respectively, the third event, with a throw of 0.44 m, and the penultimate 373 BC event suggest a variable seismic history.The entire alluvial plain of the Kerynitis and Vouraikos rivers, which cross the Eliki fault, has subsided at a rate of 1.4 mm/year, resulting in the burial of the Late Hellenistic–Roman occupation horizons under 3 m of fluvial and colluvial sediments in places.Extension in the broader area is accommodated by the seismically active Eliki and Egion faults. Structural and palaeoseismological analysis of those two faults indicates that they accommodate 1.5 mm/year, or about 10% of the geodetically estimated extension of up to 13 mm/year.  相似文献   

3.
《Quaternary Science Reviews》2003,22(10-13):1339-1343
The Wangsan fault is exposed at Kyeongju, Korea. The andesite is unconformably covered by Quaternary alternating conglomerate and sandstone deposits. The unconformity is cut by the thrust fault which displaces a hanging wall block of about 30 m. Exposed at the surface of this fault is a light gray and brown fault gouge, about 40–120 cm thick. In order to test the consistency of ESR ages from a single fault gouge zone, we collected six gouge samples systematically along and across the Wangsan fault. We found that six samples collected from the same gouge zone show consistent ESR date estimates (average 550 ka). Because fault rock is rare along faults in unconsolidated sediments due to low confining stress near the surface, we consider that this fault gouge has been moved up with the hanging wall block along the fault. The estimated average uplift rate of the hanging wall block is about 0.04 cm/year based on the age of the displaced Quaternary deposits (vertical separation; about 20 m) dated by OSL dating methods. The depth of the fault gouge at the time of reactivation, which was estimated from uplift rate and the ESR ages, is about 220 m. Therefore, we conclude that the results of ESR age estimates represent the time of reactivation of the fault gouge at a depth of 220 m in the past during fault movement, because later movements which occurred during uplift near the surface may not have zeroed ESR signals significantly for ESR dating of fault movements.  相似文献   

4.
We perform 3D modeling of earthquake generation of the Xianshuihe fault, southwestern China, which is a highly active strike-slip fault with a length of about 350 km, in order to understand earthquake cycles and segmentations for a long-term forecasting and earthquake nucleation process for a short-term forecasting. Historical earthquake data over the last 300 years indicates repeated periods of seismic activity, and migration of large earthquake along the fault during active seismic periods. To develop the 3D model of earthquake cycles along the Xianshuihe fault, we use a rate- and state-dependent friction law. After analyzing the result, we find that the earthquakes occur in the reoccurrence intervals of 400–500 years. Simulation result of slip velocity distribution along the fault at the depth of 10 km during 2694 years along the Xianshuihe fault indicates that since the third earthquake cycle, the fault has been divided into 3 parts. Some earthquake ruptures terminate at the bending part of the fault line, which may means the shape of the fault line controls how earthquake ruptures. The change of slip velocity and displacement at 10 km depth is more tremendous than the change of the shallow and deep part of the fault and the largest slip velocity occurs at the depth of 10 km which is the exact depth of the seismic zone where fast rupture occurs.  相似文献   

5.
《Quaternary Science Reviews》2003,22(10-13):1207-1211
The time-integrated slip rate in fault zones can be determined if the deformed deposits are reliably dated. Here, we report optically stimulated luminescence (OSL) ages of Late Pleistocene fluvial deposits cut by the Wangsan fault, southeastern Korea, which displaces a hanging wall block of about 28 m. Five sandy samples of the deformed Quaternary deposits were dated by quartz OSL using the single aliquot regenerative-dose (SAR) protocol. Three samples taken from the footwall block show stratigraphically consistent OSL ages of 54±7, 76±5 and 90±6 ka, from top to bottom. Two samples collected from the same layer in the hanging wall block show reproducible OSL ages of 81±5 and 82±5 ka, which are also in good agreement with the stratigraphic relationships. Our OSL ages yield an average sedimentation rate of the Quaternary deposits as around 0.04 mm a−1, and a minimum value of time-integrated slip rate as 0.52 mm a−1. This minimum slip rate is considerably higher than those reported earlier for Quaternary faults in southeastern Korea. The youngest OSL age (54±7 ka) constrains the maximum value of the recurrence interval of the fault movement.  相似文献   

6.
A 2000 km long dextral Talas-Fergana strike–slip fault separates eastern terranes in the Kyrgyz Tien Shan from western terranes. The aim of this study was to constrain an age of dextral shearing in the central part of the fault utilizing Ar–Ar dating of micas. We also carried out a U–Pb–Hf zircon study of two different deformed granitoid complexes in the fault zone from which the micas for Ar dating were separated. Two samples of the oldest deformed Neoproterozoic granitoids in the area of study yielded U–Pb zircon SHRIMP ages 728 ± 11 Ma and 778 ± 11 Ma, characteristic for the Cryogenian Bolshoi Naryn Formation, and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and their calculated tHfc ages varied from 2.42 to 2.71 Ga. Thus varying Cryogenian ages and noticeable heterogeneity of Meso- to Paleoproterozoic crustal sources was established for mylonitic granites of the Bolshoi Naryn Formation. Two samples of mylonitized pegmatoidal granites of the Kyrgysh Complex yielded identical 206Pb/238U ages of 279 ± 5 Ma corresponding to the main peak of Late-Paleozoic post-collisional magmatism in the Tien Shan (Seltmann et al., 2011), and zircon grains analyzed for their Lu–Hf isotopic compositions yielded εHf(t) values from −11.43 to −16.73, and calculated tHfc ages from 2.42 to 2.71 Ga indicating derivation from a Paleoproterozoic crustal source. Microstructural studies showed that ductile/brittle deformation of pegmatoidal granites of the Kyrgysh Complex occurred at temperatures of 300–400 °C and caused resetting of the K–Ar isotope system of primary muscovite. Deformation of mylonitized granites of the Bolshoi Naryn Formation occurred under high temperature conditions and resulted in protracted growth and recrystallization of micas. The oldest Ar–Ar muscovite age of 241 Ma with a well defined plateau from a pegmatoidal granite of the Kyrgysh Complex is considered as a “minimum” age of dextral motions along this section of the fault in the Triassic while younger ages varying from 227 Ma to 199 Ma with typical staircase patterns indicate protracted growth and recrystallization of micas during ductile deformations which continued until the end of the Triassic.  相似文献   

7.
The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north–south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE–SW to NW–SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.  相似文献   

8.
A paleo-seismological study was conducted at Jaflong, Sylhet, Bangladesh, which is on the eastern part of the Dauki fault. The geomorphology around Jaflong is divided into the Shillong Plateau, the foothills, the lower terraces, and the alluvial plain from north to south. Because the foothills and lower terraces are considered to be uplifted tectonically, an active fault is inferred to the south of the lower terraces. This fault, which branches from the Dauki fault as a foreland migration, is known as the Jaflong fault in this paper. The trench investigation was conducted at the southern edge of the lower terrace. The angular unconformity accompanied by folding, which is thought to be the top of the growth strata, was identified in the trench. An asymmetric anticline with a steep southern limb and gentle northern limb is inferred from the back-tilted lower terrace and the folding of the gravel layer parallel to the lower terrace surface. The timing of the seismic event which formed the folding and unconformity is dated to between AD 840 and 920.The trench investigation at Gabrakhari, on the western part of the Dauki fault, revealed that the Dauki fault ruptured in AD 1548 (Morino et al., 2011). Because the 1897 great Indian earthquake (M  8.0; Yeats et al., 1997) was caused by the rupture of the Dauki fault (Oldham, 1899), it is clear that the Dauki fault has ruptured three times in the past one thousand years. The timing of these seismic events coincides with that of the paleo-liquefactions confirmed on the Shillong Plateau. It is essential for the paleo-seismological study of the Dauki fault to determine the surface ruptures of the 1897 earthquake. The Dauki fault might be divided into four rupture segments, the western, central, eastern, and easternmost segments. The eastern and western segments ruptured in AD 840–920 and in 1548, respectively. The 1897 earthquake might have been caused by the rupture of the central segment.  相似文献   

9.
Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.  相似文献   

10.
The degradation of the Jobourg fault-scarp occurred by cryoclastic processes in a periglacial environment during a part of Quaternary time. An attempt of quantification indicates a bulk scarp erosion of about 39 m3 m?2, while the head accumulated at the bottom of the fault scarp only represents 4.6 m3 m?2. To cite this article: M. Font et al., C. R. Geoscience 334 (2002) 171–178.  相似文献   

11.
The present article is the first time reporting of a paleoearthquake that occurred during Late Pleistocene time along the Nalagarh Thrust (NT) in the Pinjaur Dun in northwestern sub-Himalaya. Using CORONA satellite photographs, multi-spectral IRS satellite data, and aerial photographs, a prominent active fault has been identified at Nalagarh in Pinjaur Dun. This fault in the alluvial fan is located very close to the NT which borders the topographic front of the Tertiary rocks against Quaternary deposits. A trench excavation survey was carried out at Nalagarh for detailed paleoseismic studies across this thrust fault. Displacing all the lithologic units of the fan sequence, the fault plane has an average dip of 30° due ENE and a vertical displacement of 1.6 m and slip of ~2.5 m along the fault. The lithological units, consisting of alternating sand and gravel, show back tilting and asymmetrical tight folding. Based on Optically Stimulated Luminescence (OSL) ages, the oldest litho-unit in the trench is 85.83 ± 7.2 ka and the youngest is 67.05 ± 8.4 ka. The OSL age of the sample collected from the easterly exposure of the fault shows an age of 20 ka. The faulting and associated induced deformation features suggest occurrence of a Late Pleistocene large magnitude earthquake along NT in the Nalagarh region of the Pinjaur Dun following the deposition of the Quaternary sedimentary units. The Late Pleistocene fault substantiates the seismic potential of Pinjaur Dun and calls for more exhaustive study of paleoearthquakes in this fast developing industrial belt and highly populous mountainous region.  相似文献   

12.
The traditional concept of the rift development of flank depressions in the Baikal rift zone is now doubted in view of some indicators for compression deformations identified by the seismogeological and geodetic methods. Besides, the paleoseismological investigations revealed seismogenic strike-slips and reverse faults in the Tunka fault zone that is a major structure-controlling element of the Tunka rift depression. However, a detailed study of the upslope-facing scarp in the Arshan paleoseismogenic structure zone has shown that its formation might be due to rift mechanism of basin formation. Age estimation has been made for the previously unknown pre-historic earthquake whose epicentral area coincides with the western flank of the Arshan paleoseismogenic structure. Judging from previously determined ages of paleoearthquakes, the mean recurrence period for faulting events on the central Tunka fault is 2780–3440 years.  相似文献   

13.
Western Tibet, between the Karakorum fault and the Gozha–Longmu Co fault system, is mostly internally drained and has a 1.5–2 km amplitude relief with km-large valleys. We investigate the origin of this peculiar morphology by combining a topography analysis and a study of the Cenozoic sedimentation in this area. Cenozoic continental strata correspond to a proximal, detrital fan deposition, and uncomformably rest on a palaeorelief similar to the modern one. Zircon U–Pb dating from trachytic flows interbedded within the Cenozoic continental sediments indicates that detrital sedimentation occurred at least between ca 24 and 20 Ma in the Shiquanhe basin, while K/Ar ages suggest it may have started since ~ 37 Ma in the Zapug basin. The distribution of continental deposits shows that present-day morphology features, including km-large, 1500 m-deep valleys, were already formed by Early Miocene times. We suggest that today's internally drained western Tibet was externally drained, at least during late Miocene, contemporaneously with early motion along the Karakorum Fault. Detailed study of the present day river network is compatible with a dextral offset on the Karakorum Fault of 250 km at a rate of ~ 10 ± 1 mm/yr. Displacement along the Karakorum fault possibly induced the shift from external to an internal drainage system, by damming of the Bangong Co ~ 4 Ma ago, leading to the isolation and preservation of the western Tibet relief.  相似文献   

14.
《Earth》2006,74(1-4):245-270
New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ∼3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post − 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast–southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.  相似文献   

15.
《Journal of Structural Geology》1999,21(8-9):1103-1108
Resolution of the `Paleomagnetic dilemma', the discrepancy between large paleomagnetically determined dextral displacement of outboard portions of the northern Cordillera, and much smaller offsets implied by mapping and stratigraphic correlations, is fundamental to understanding the tectonic evolution of the Cordillera. This paper presents structural orientation data from the middle Cretaceous Dawson Range batholith of west central Yukon and its wallrocks, and suggests that some of the `missing' displacement may be found in intrusions. The elongate northwest-trending batholith has a margin-parallel foliation, a sub-horizontal stretching lineation, and records syn-intrusive dextral shearing. In country rocks adjacent to the batholith, north-trending lineations are deflected clockwise into near parallelism with the batholith's margins; lineations from wallrock screens within the batholith are all aligned parallel with the batholith's long axis. The Big Creek strike-slip fault forms the north-margin of the batholith and accommodated a minimum of 20 km of dextral slip. These observations imply that the batholith invaded an active dextral shear zone, accommodated shearing while crystallizing, and focused post-crystallization fault development. The batholith is conservatively estimated to have accommodated 45 km of syn-intrusive shearing. Collectively, middle Cretaceous intrusions of the northern Cordillera may account for >400 km of previously unrecognized dextral displacement.  相似文献   

16.
The Chia-Nan (Chiayi-Tainan) area is in the southwestern Taiwan, and is located at the active deformation front of the collision of the Eurasian continental plate and the Philippine Sea plate, which causes complex folds as well as thrust fault systems in the area. The Chukuo fault zone is a boundary between the Western Foothill and the Western Coastal Plain in the Chia-Nan area. The nature of the crustal structure beneath the fault zone, especially the eastern part of the fault zone with mountain topography, has not been well known in detailed due to lack of drilling data as well as its limitation in using other geophysical methods, such as active source survey. In this study, we deployed an array with 11 broadband seismic stations to monitor the seismicity of the Chukuo fault zone. The array has recorded more than 1000 microearthquakes around this area. It provides an opportunity to use P- and S-wave travel time data to investigate the both the crustal P- and S-velocity in the fault zone, however due to the nature of the earthquake distribution, the ray density is relatively low at depth between 0 and 7 km. In addition, the uncertainty of S-wave reading for small earthquake also a limit in building precise S-velocity profile, Thus, we take the advantages of using cross-correlation of seismic ambient noise to investigate crustal S-velocity profile in the Chukuo fault area, especially in the mountain area where crustal faulting is a dominated phenomenon. The results indicate that S-wave velocity in the uppermost crust in the Chukuo fault zone is shown to be slower than previous studies. A low velocity layer exists at depth between 1 and 2 km in the east of the Chukuo Fault. The low S-velocity is related to a highly fractured upper crust due to intensive deformation caused by the orogenic process.  相似文献   

17.
《Quaternary Science Reviews》2007,26(22-24):2897-2912
The Late Cenozoic development of the River Tana in Kenya has been reconstructed for its central reach near its confluence with the River Mutonga, which drains the Mount Kenya region. Age control for this system has been provided by K–Ar and Ar–Ar dating. Between 3.21 and 2.65 Ma a major updoming occurred, in relation to the formation of the Kenyan rift valley. The tilting related to this doming has been reconstructed from lava flows that preserve former river gradients. Linear projection of these trends to the current rift valley rim suggests a net updoming of the eastern Gregory Rift valley by at least ∼1 km during 3.21–2.65 Ma. In contrast, since 2.65 Ma the Tana system has been mainly subject to relatively minor epeirogenic uplift. Changing climatic conditions combined with continuing uplift yielded a typical staircase of strath terraces with at least 10 distinct levels. A more detailed reconstruction of the incision rates since 215 ka has been made, by correlating mineralogically fingerprinted volcaniclastic Tana deposits with dated tephras in a lake record. These volcaniclastic sediments were deposited during glacial periods, contemporaneous with lahars. The reconstructed incision rates for the three youngest terraces are ∼0.1–0.2 mm a−1, thus considerably faster than the overall average rate of valley incision since the Mid-Pliocene, of 0.06 mm a−1. A plausible uplift history has been reconstructed using the estimated ages of the Tana terraces and marine terraces on the Indian Ocean coastline. The result suggests an increase in the rate of incision by the River Tana at ∼0.9 Ma, an observation typical in most European river terrace staircases. The reconstructed Late Quaternary development of Tana valley indicates that a similar Quaternary uplift mechanism has operated in both Europe and East Kenya, suggesting a globally applicable process.  相似文献   

18.
The 1200 km-long North Anatolian Transform Fault connects the East Anatolian post-collisional compressional regime in the east with the Aegean back-arc extensional regime to the west. This active dextral fault system lies within a shear zone reaching up to 100 km in width, and consists of southward splining branches. These branches, which have less frequent and smaller magnitude earthquake activity compare to the major transform, cut and divide the shear zone into fault delimited blocks. Comparison of palaeomagnetic data from 46 sites in the Eocene volcanics from different blocks indicate that each fault-bounded block has been affected by vertical block rotations. Although clockwise rotations are dominant as expected from dextral fault-bounded blocks, anticlockwise rotations have also been documented. These anticlockwise rotations are interpreted as due to anticlockwise rotation of the Anatolian Block, as indicated by GPS measurements, and the effects of unmapped faults or pre-North Anatolian Fault tectonic events.  相似文献   

19.
A recently developed illite-age-analysis (IAA) approach was applied to determine the multiple events for the Chugaryeong fault belt, Korea. Each event was determined by a combined approach of the optimized illite-polytype quantification and the K–Ar age-dating of clay fractions separated from the fault clays. The Late Cretaceous to Paleogene events (76.5 ± 0.8, 69.1 ± 0.6, 59.3 ± 0.7, and 48.2 ± 0.7 Ma) were recognized by calculating the authigenic 1M/1Md illite ages on the IAA plots of the fault clays. The Early Cretaceous ages (121.7–124.7 and 112.4 ± 1.5 Ma) were also obtained from the convergent intercepts of 100% 2M1 illite on the IAA plots. The absence of the 2M1 illites in the host-rock indicates that the Early Cretaceous ages represent the timings of high-T hydrothermal events of >280 °C. The 2M1 illites in the fault clays should be pre-formed by a fluid-rock interaction under a relatively high-T subsurface condition, and be mechanically reworked into the near surface along the fault by post-tectonic events. This is the first report determining the absolute age constraints of multi-activated tectonic events from a fault. These geochronological determinations of the multiple events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since the Late Cretaceous.  相似文献   

20.
Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M  5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号