首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在耦合模式WRF/Noah-MP中加入考虑地下水过程的动态灌溉方案,设计两组试验(分别为考虑和不考虑地下水灌溉),连续模拟10 a(2001—2010年),来研究华北平原地下水灌溉的区域气候效应。结果表明,地下水灌溉导致华北平原地下水位下降,在少雨的季节灌溉量大,水位下降较快。在灌溉期(3—9月),灌溉引起的土壤湿度升高影响了地表能量的分配(潜热增加,感热减少),导致2 m气温显著降低0.6—1.0℃,同时也降低了灌溉区夏季模拟偏高的气温。灌溉对灌溉区边界层大气有升高湿度和冷却降温的作用,对春季的影响局限在边界层内,而夏季的影响持续到5000 m以上。夏季灌溉对降水的影响远强于春季,灌溉的升高湿度和冷却效应分别对夏季降水产生正反馈和负反馈,共同影响灌溉区的降水变化。灌溉通过对水汽输送的影响,引起非灌溉区降水的变化,而长江中下游流域夏季降水的增多可能与高空西风急流轴位置南移有关。   相似文献   

2.
The impacts of three periods of urban land expansion during 1990–2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscale Weather Research and Forecasting model coupled with a single urban canopy model,as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000–2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.  相似文献   

3.
The impact of land use change on regional climate can be substantial but also is variable in space and time. Past observational and modeling work suggests that in a ‘Mediterranean’ climate such as in California’s Central Valley, the impact of irrigated agriculture can be large in the dry season but negligible in the wet season due to seasonal variation in surface energy partitioning. Here we report further analysis of regional climate model simulations showing that diurnal variation in the impact of irrigated agriculture on climate similarly reflects variation in surface energy partitioning, as well as smaller changes in net radiation. With conversion of natural vegetation to irrigated agriculture, statistically significant decreases of 4–8?K at 2?m occurred at midday June–September, and small decreases of ~1?K occurred in winter months only in relatively dry years. This corresponded to reduced sensible heat flux of 100–350?W?m?2 and increased latent heat fluxes of 200–450?W?m?2 at the same times and in the same months. We also observed decreases of up to 1,500?m in boundary layer height at midday in summer months, and marginally significant reductions in surface zonal wind speed in July and August at 19:00 PST. The large decrease in daytime temperature due to shifts in energy partitioning overwhelmed any temperature increase related to the reduced zonal sea breeze. Such changes in climate and atmospheric dynamics from conversion to (or away from) irrigated agriculture could have important implications for regional air quality in California’s Central Valley.  相似文献   

4.
Summary The performance of MM5 mesoscale model (Version 3.6.3) using different planetary boundary layer (PBL) and land surface model (LSM) parameterizations is evaluated and compared using high temporal and spatial resolution G?TE2001 campaign data at local scale (a few kilometers) over the Greater G?teborg area along the Swedish west coast during 7–20 May 2001. The focus is on impact of PBL and LSM parameterizations on simulated meteorological variables important for air quality applications such as global radiation, diurnal cycle of near-surface air temperature and wind, diurnal cycle intensity, near-surface vertical temperature gradient, nocturnal temperature inversion, boundary layer height, and low-level jet (LLJ). The model performance for daytime and nighttime and under different weather conditions is also discussed. The purpose is to examine the performance of the model using different PBL and LSM parameterizations at local scale in this area for its potential applications in air quality modeling. The results indicate that the influence of PBL and LSM parameterizations on simulated global radiation, diurnal cycle of near-surface air temperature and wind speed, diurnal cycle intensity, vertical temperature gradient, nocturnal temperature inversion and PBL heights, which are critical parameters for air quality applications, is evident. Moreover, the intensity and location of LLJ are simulated well by all schemes, but there also exist some differences between simulated results by using different PBL and LSM schemes. Therefore, the choice of PBL and LSM parameterizations is important for MM5 applications to air quality studies. Correspondence: Junfeng Miao, Department of Earth Sciences, G?teborg University, P.O. Box 460, 405 30 G?teborg, Sweden  相似文献   

5.
6.
华文剑  陈海山 《大气科学》2011,35(1):121-133
利用“国际耦合模式比较计划” (Phase 3 of the Coupled Model Intercomparison Project, CMIP3) 12个模式对20世纪 (The Twentieth-Century Climate in Coupled Models, 20C3M) 和21世纪SRES (Special Report on Emissions Scenarios) A1B 情景下的模拟结果, 通过21世纪 (2001~2099年) 与20世纪 (1901~1999年) 陆面能量和水文变量的对比分析, 揭示了陆面过程对全球变暖响应的基本特征, 并探讨了其可能的响应机制。结果表明, 与20世纪相比, 21世纪全球陆面平均的表面温度、 地表净辐射、 潜热通量明显增加; 而感热通量有所减小。降水、 径流、 蒸发等地表水循环分量也表现出不同程度的增加, 而土壤含水量有减小趋势。通过分析近地层主要大气强迫变量与陆面变量之间的联系, 发现陆面能量平衡过程对全球变暖的响应主要受向下长波辐射和气温变化的影响, 而温度的变化对陆面水文过程的影响起决定性的作用。进一步分析表明, 陆面过程对全球变暖的响应存在明显的区域性差异, 陆面温度和感热对全球变暖响应最显著的区域位于北半球中高纬, 而净辐射和潜热对全球变暖的响应在亚洲中部和非洲大陆最显著。相对于20世纪, 21世纪主要是长波辐射和温度对陆面能量平衡过程的贡献重要。对于陆面水文过程, 径流和土壤含水量对全球变暖的响应在亚洲中部以及北美最显著。在全球变暖背景下, 21世纪相对于20世纪, 温度对陆面水循环的影响更加显著, 主要体现在北半球中纬度地区。  相似文献   

7.
In climate modeling studies, there is a need to choose a suitable land surface model (LSM) while adhering to available resources. In this study, the viability of three LSM options (Community Land Model version 4.0 [CLM4.0], Noah-MP, and the five-layer thermal diffusion [Bucket] scheme) in the Weather Research and Forecasting model version 3.6 (WRF3.6) was examined for the warm season in a domain centered on the central USA. Model output was compared to Parameter-elevation Relationships on Independent Slopes Model (PRISM) data, a gridded observational dataset including mean monthly temperature and total monthly precipitation. Model output temperature, precipitation, latent heat (LH) flux, sensible heat (SH) flux, and soil water content (SWC) were compared to observations from sites in the Central and Southern Great Plains region. An overall warm bias was found in CLM4.0 and Noah-MP, with a cool bias of larger magnitude in the Bucket model. These three LSMs produced similar patterns of wet and dry biases. Model output of SWC and LH/SH fluxes were compared to observations, and did not show a consistent bias. Both sophisticated LSMs appear to be viable options for simulating the effects of land use change in the central USA.  相似文献   

8.
Summary The Tierras Bajas regions of eastern Santa Cruz, Bolivia have undergone among the most rapid rates of concentrated deforestation during the 1980s and 1990s. We investigate the sensitivity of local climate to these land cover changes as observed from Landsat images acquired between 1975 and 1999. The Simple Biosphere model (SiB2) is used to assess the effects of both morphological and physiological changes in vegetation and the implications for fluxes of water, energy and carbon between the vegetation and the atmosphere during the rainy season.Conversion from tropical forest to cropland implicates morphological changes in vegetation as the primary drivers for a daily maximum warming of about 2°C and a slight nighttime cooling, suggesting that clearing of tropical forests for agricultural use may increase the diurnal temperature range, mainly by increasing the maximum temperature. On the other hand, the conversion of wooded grassland to cropland resulted in a similar daily warming and drying but exclusively due to vegetation physiological activity.The area-averaged monthly mean response for each conversion type resulted in a warming of about 0.6°C for the conversion of broadleaf evergreen and 1.2°C for conversion of wooded grassland. These temperature differences represent an augmentation in the local heat source associated with a reduction in evapotranspiration due to land cover conversion and do not reflect variations forced by changes in atmospheric circulation.When averaged over the entire domain, the effect of landscape conversion results in a reduction of the latent heat flux and an increase in sensible heat flux, producing a large-scale apparent heat source of 0.5°C during January. This warming is in line with an increasing trend observed in monthly mean temperature in Santa Cruz, Bolivia during the same period.  相似文献   

9.
游婷  张华  王海波  赵敏 《大气科学》2020,44(4):835-850
本文利用2001~2017年ERA5再分析资料以及CERES卫星资料,探究夏季白天中国中东部不同类型云的云量及其光学厚度的时空变化特征,并利用一维辐射对流模式定量分析不同类型云对近地表气温的影响。观测结果表明:夏季白天中国中东部总云量及其光学厚度整体呈由南向北逐渐减小的分布特征,且中高云量占主导地位。总云量整体呈?0.3% a?1显著减少趋势,其中低云的贡献(?0.27% a?1)最大;总云光学厚度为0~0.1 a?1增加趋势,其中低云光学厚度(0.06 a?1)和中低云光学厚度(0.03 a?1)呈增加趋势,而中高云光学厚度(?0.08 a?1)和高云光学厚度(?0.03 a?1)呈减少趋势。模式结果表明:四种不同类型云的温度效应(Cloud Effect Temperature, CET)均为负值,表现为降温效应。低云、中低云、中高云和高云的年均CET值分别为?2.9°C、?2.7°C、?2.2°C和?1.7°C。其中,低云在华北平原降温可达?5°C;中低云和中高云在四川盆地和云贵高原降温可达?7.8°C。不同类型云温度效应与近地表气温的年际变化具有较好的一致性,具体表现为:2004年前(后)近地表气温呈现下降(上升)趋势,不同类型云的CET在此期间呈下降(上升)趋势,表现为云的降温效应增强(减弱)与近地表气温下降(上升)相对应,体现了夏季白天中国中东部4种不同类型云温度效应与近地表气温都呈正相关关系。特别地,夏季白天中国中东部中高云量占主导地位,其CET与近地表气温的相关系数高达0.63。综上,夏季白天中国中东部不同类型云温度效应对近地表气温的影响不同,但均呈正相关关系。定量分析不同类型云对近地表气温的影响可以为定量研究云反馈对区域增暖的作用以及合理预估未来区域增暖情景提供必要的科学参考。  相似文献   

10.
The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86°C relative to the pre-industrial level, achieving the target to limit the global warming to 2°C. Associated with the “increase-peak-decline” greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006–55 and cooling during 2056–2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006–55 is distributed globally, while the cooling during 2056–2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period.  相似文献   

11.
The diurnal surface temperature range(DTR) has become significantly smaller over the Tibetan Plateau(TP) but larger in southeastern China, despite the daily mean surface temperature having increased steadily in both areas during recent decades.Based on ERA-Interim reanalysis data covering 1979–2012, this study shows that the weakened DTR over TP is caused by stronger warming of daily minimum surface temperature(Tmin) and a weak cooling of the daily maximum surface temperature(Tmax); meanwhile, the enhanced DTR over southeastern China is mainly associated with a relatively stronger/weaker warming of Tmax/Tmin. A further quantitative analysis of DTR changes through a process-based decomposition method—the Coupled Surface–Atmosphere Climate Feedback Response Analysis Method(CFRAM)—indicates that changes in radiative processes are mainly responsible for the decreased DTR over the TP. In particular, the increased low-level cloud cover tends to induce the radiative cooling/warming during daytime/nighttime, and the increased water vapor helps to decrease the DTR through the stronger radiative warming during nighttime than daytime. Contributions from the changes in all radiative processes(over-2?C) are compensated for by those from the stronger decreased surface sensible heat flux during daytime than during nighttime(approximately 2.5?C), but are co-contributed by the changes in atmospheric dynamics(approximately-0.4?C) and the stronger increased latent heat flux during daytime(approximately-0.8?C). In contrast, the increased DTR over southeastern China is mainly contributed by the changes in cloud, water vapor and atmospheric dynamics. The changes in surface heat fluxes have resulted in a decrease in DTR over southeastern China.  相似文献   

12.
介绍了国家自然科学基金重点项目 "地表通量参数化与大气边界层过程的基础研究" 在河北省白洋淀地区进行的两次综合观测实验(时间分别是2004年11月16~22日和2005年9月8~27日),这两次实验获得了大量宝贵的资料,全面深入的资料分析正在进行中.此文主要限于白洋淀地区水陆不均匀地表近地面层微气象特征的分析.结果表明: 陆地上近地面层的气温日变化比水域上的大,而风速比水域上的小,其中9月份陆地上白天的气温比水域上的高,夜间比水域上的低,11月份两地白天气温接近,但夜间陆地上的气温明显偏低; 无论是9月还是11月,水域上近地面层都是以下沉气流为主,而陆地则在中午前后存在弱的上升运动; 9月份,两地的近地面层短波射入辐射比较接近,但水域上的短波射出辐射比陆地上的大; 长波射入辐射则是陆地比水域的大,而长波射出辐射则是水域的比陆地的大; 两地的净辐射白天接近,夜间水域地区负的净辐射值明显比陆地的大; 9月份,水陆两地的感热通量相差不大,为150~200 W/m2,而潜热通量比感热通量大,天气晴朗时可达到300 W/m2; 11月份,陆地的感热通量比潜热通量大,为100~120 W/m2,而水域地区的感热通量则与潜热通量相当; 两地的潜热通量相差不大,一般不超过50 W/m2.无论是9月还是11月,水域地区夜间都存在水汽向下输送的逆湿现象,而陆地只在9月份存在逆湿现象.2005年9月份的水温观测结果表明,白洋淀水体平均温度比水表平均温度明显偏高,而且日变化幅度很小,水表平均温度则日变化较大.  相似文献   

13.
利用归一化植被指数(Normalized Difference Vegetation Index,NDVI)将中国划分为不同的生态区,在此基础上分析夏季植被状况与不同生态区增暖之间的联系。研究表明,就多年平均而言,中国植被覆盖呈现自东向西逐渐减少的空间分布。1982年以来,植被稀疏的干旱生态区是夏季增暖最明显的区域,平均气温和平均最高气温增速大都位于0.6~1.0℃/10 a,而平均最低气温的升高达到0.8~1.4℃/10 a,明显高于中国其他区域。进一步分析发现,夏季气温的变化与其所处地区的植被疏密程度之间存在很好的负相关关系,即快速增暖主要发生在植被稀疏区,且这种负相关关系在夏季平均最低气温上最为显著。不同植被覆盖区中气温的长期变化趋势,受NDVI变化带来的地表反照率和云量变化的影响,但各生态区不尽相同,主要表现在:植被稀疏的干旱生态区,植被减少,引起地表反照率增加,感热输送增加而潜热输送减小,加速了该地区整体的增温速率;而在植被茂密地区,植被增加造成地表反照率减少,同时由于蒸发冷却,其整体增暖幅度缓于植被稀疏区。所以,植被活动对全球变暖背景下的区域气候变化具有重要作用,尤其表现在干旱生态区的陆面过程上,地表辐射平衡和能量收支的显著改变放大了干旱生态区的增暖速率。  相似文献   

14.
The difficulties associated with the parameterization of turbulence in the stable nocturnal planetary boundary layer (PBL) have been a great challenge for the nighttime predictions from mesoscale meteorological models such as MM5. As such, there is a general consensus on the need for better stable boundary-layer parameterizations. To this end, two new turbulence parameterizations based on the measurements of the Vertical Transport and Mixing (VTMX) field campaign were implemented and evaluated in MM5. A unique aspect of this parameterization is the use of a stability-dependent turbulent Prandtl number that allows momentum to be transported by the internal waves, while heat diffusion is impeded by the stratification. This improvement alleviates the problem of over-prediction of heat diffusion under stable conditions, which is a characteristic of conventional atmospheric boundary-layer schemes, such as the Medium Range Forecast (MRF) and Blackadar schemes employed in MM5. The predictions made with the new PBL scheme for the complex terrain airshed of Salt Lake City were compared with those made with a default scheme of MM5, and with observations made during the VTMX campaign. The new schemes showed an improvement in predictions, particularly for the nocturnal near-surface temperature. Surface wind predictions also improved slightly, but not to the extent of temperature predictions. The default MRF scheme showed a significantly higher surface temperature than observed, which could be attributed to the enhanced vertical heat exchange brought about by its turbulence parameterization. The modified parameterizations reduced the surface sensible heat flux, thus enhancing the strength of the near-surface inversion and lowering the temperature towards the observed values.  相似文献   

15.
Strong climate-related secular trends are apparent in a 52-yr long (1947–1998) uninterrupted series of monthly temperature profiles fromLake Zurich, a large, deep (136 m), temperate lake on the Swiss Plateau. Decadal mean water temperatures have undergone a secular increase at all depths, reflecting the high degree of regional warming that occurred in the European Alpine area during the 20th century. From the 1950s to the 1990s, high warming rates ( 0.24 K per decade) in the uppermost 20 m of the lake (i.e., the epi/metalimnion) combined with lower warming rates ( 0.13 K per decade) below 20 m (i.e., in the hypolimnion), have resulted in a20% increase in thermal stability and a consequent extension of 2–3 weeksin the stratification period. In common with many other parts of the world, 20th-century climate change on the Swiss Plateau has involved a steep secular increase in daily minimum (nighttime) air temperatures, but not in daily maximum (daytime) air temperatures. With respect to both secular change and decadal-scale variability, the temporal structure of the temperature of the surface mixed layer of Lake Zurich faithfully reflects that of the regional daily minimum air temperature, but not that of the daily maximum. The processes responsible for longer-term changes in the temperature structure of the lake therefore act during the night, presumably by suppressing nighttime convective cooling of the surface mixed layer. Application of a one-box heat exchange model suggests that the observed secular changes in thermal structure are due to shifts in the nighttime rate of emission of infrared radiation from the atmosphere and in the nighttime rates of latent and sensible heat exchange at the air-water interface. The increase in hypolimnetic temperatures is mainly a result of the increased prevalence of warm winters in Europe.  相似文献   

16.
为准确描述我国最大的固定/半固定沙漠-古尔班通古特沙漠区域的大气边界层结构,本文利用该沙漠腹地2017年的梯度铁塔和通量观测数据,基于中尺度气象模式WRF (Weather Research and Forecast v3.7.1),分析了5种边界层参数化方案在古尔班通古特沙漠的适用性。结果表明:1)采用WRF模拟沙漠腹地近地层内的边界层特征时,2m气温的模拟存在冷偏差,5种边界层参数化方案均能较好地模拟出四个季节2m气温的日变化特征,其中非局地方案ACM2(Asymmetric Convective Model version 2)对2m气温效果最好,局地方案BL方案的模拟偏差最大;2)5种边界层参数化方案均能够模拟出10m风速的日变化特征,其中局地方案BL(Bougeault-Lacarrere)对10m风速效果最佳;3)采用WRF模拟沙漠近地层内的地表通量特征时,感热通量存在高估现象,潜热通量存在低估现象,5种边界层参数化方案均能较好地模拟出四个季节模拟时间段内地表净辐射通量的日变化特征,其中局地方案MYJ(Mellor-Yamada-Janjie)的模拟精度最高。  相似文献   

17.
The seasonal cycle in coupled ocean-atmosphere general circulation models   总被引:1,自引:0,他引:1  
We examine the seasonal cycle of near-surface air temperature simulated by 17 coupled ocean-atmosphere general circulation models participating in the Coupled Model Intercomparison Project (CMIP). Nine of the models use ad hoc “flux adjustment” at the ocean surface to bring model simulations close to observations of the present-day climate. We group flux-adjusted and non-flux-adjusted models separately and examine the behavior of each class. When averaged over all of the flux-adjusted model simulations, near-surface air temperature falls within 2?K of observed values over the oceans. The corresponding average over non-flux-adjusted models shows errors up to ~6?K in extensive ocean areas. Flux adjustments are not directly applied over land, and near-surface land temperature errors are substantial in the average over flux-adjusted models, which systematically underestimates (by ~5?K) temperature in areas of elevated terrain. The corresponding average over non-flux-adjusted models forms a similar error pattern (with somewhat increased amplitude) over land. We use the temperature difference between July and January to measure seasonal cycle amplitude. Zonal means of this quantity from the individual flux-adjusted models form a fairly tight cluster (all within ~30% of the mean) centered on the observed values. The non-flux-adjusted models perform nearly as well at most latitudes. In Southern Ocean mid-latitudes, however, the non-flux-adjusted models overestimate the magnitude of January-minus-July temperature differences by ~5?K due to an overestimate of summer (January) near-surface temperature. This error is common to five of the eight non-flux-adjusted models. Also, over Northern Hemisphere mid-latitude land areas, zonal mean differences between July and January temperatures simulated by the non-flux-adjusted models show a greater spread (positive and negative) about observed values than results from the flux-adjusted models. Elsewhere, differences between the two classes of models are less obvious. At no latitude is the zonal mean difference between averages over the two classes of models greater than the standard deviation over models. The ability of coupled GCMs to simulate a reasonable seasonal cycle is a necessary condition for confidence in their prediction of long-term climatic changes (such as global warming), but it is not a sufficient condition unless the seasonal cycle and long-term changes involve similar climatic processes. To test this possible connection, we compare seasonal cycle amplitude with equilibrium warming under doubled atmospheric carbon dioxide for the models in our data base. A small but positive correlation exists between these two quantities. This result is predicted by a simple conceptual model of the climate system, and it is consistent with other modeling experience, which indicates that the seasonal cycle depends only weakly on climate sensitivity.  相似文献   

18.
Various ocean reanalysis data reveal that the subarctic Atlantic sea surface temperature (SST) has been cooling during the twentieth century. A similar cooling pattern is found in the doubling CO2 experiment obtained from the CMIP3 (coupled model intercomparison project third phase) compared to the pre-industrial experiment. Here, in order to investigate the main driver of this cooling, we perform the heat budget analysis on the subarctic Atlantic upper ocean temperature. The net surface heat flux associated with the increased concentration of greenhouse gases heats the subarctic ocean surface. In the most of models, the longwave radiation, latent heat flux, and sensible heat flux exert a warming effect, and the shortwave radiation exerts a cooling effect. On the other hand, the thermal advection by the meridional current reduces the subarctic upper ocean temperature in all models. This cold advection is attributed to the weakening of the meridional overturning circulation, which is related to the reduction in the ocean surface density. In particular, greater warming of the surface air than of the sea surface results in the reduction of surface evaporation and thereby enhanced freshening of the ocean surface water, while precipitation change was smaller than evaporation change. The thermal advections by both the wind-driven Ekman current and the density-driven geostrophic current contribute to cooling in most of the models, where the heat transport by the geostrophic current tends to be larger than that by the Ekman current.  相似文献   

19.
曹帮军  吕世华  张宇  李彦霖 《大气科学》2020,44(6):1188-1202
为了研究湍涡对中尺度绿洲灌溉的响应,利用WRF模式大涡模拟模块(WRF-LES)在西北半干旱区绿洲区开展灌溉前和灌溉后两个大涡模拟试验(分别简称为BI和AI),其中灌溉可能会改变绿洲非均匀强度。利用面积平均的办法计算湍流热通量并利用小波分析将湍流热通量模态分解到不同的尺度。结果表明灌溉增加了土壤湿度,引起绿洲内部非均匀强度增加,灌溉对垂直热通量以及通量频散都有较大影响。AI中的湍涡为网状,与BI中一致。AI与BI中的感热通量的频散高度都随着感热通量的减小而减小。AI与BI中感热通量小波能量谱尺度一致,但是BI中强度比AI小。潜热通量的频散高度依赖于感热通量,且潜热通量能量谱随高度减小。空间滞后相关系数的结果表明由于灌溉前地表加热较强,感热通量对地表热通量的响应高度在灌溉之前(BI)比灌溉后(AI)更高。灌溉后的通量模态的飘移距离小于灌溉前的。  相似文献   

20.
通过中亚费尔干纳盆地2007~2011年气候的模拟试验,揭示了新增农田灌溉过程与更新土壤参数对WRF(Weather Research and Forecasting)/Noah模式模拟精度的提升作用。通过对比标准版本与嵌入灌溉过程参数化方案后的WRF/Noah模式的模拟结果,研究发现农业灌溉提升了土壤含水量,导致地表蒸发增强,潜热增加,感热减少,致使近地层大气降温、增湿,这一效应降低了WRF/Noah模拟的暖、干偏差,模拟2 m气温和大气比湿均方根误差分别由6.52°C降低至5.81°C,由1.66 g/kg降低至1.13 g/kg。进而针对WRF默认配置的费尔干纳盆地内土壤数据精度欠佳的问题,再利用国际土壤参比与信息中心(ISRIC)数据(主要是粉砂粘壤土和粉砂壤土)替换了WRF默认的数据(主要是粘土和壤土),降低了土壤凋萎系数,使得有效土壤水增多,缩小了灌溉需水量的模拟误差,并使得蒸散发进一步增强,潜热增多,感热减少,导致近地层降温、增湿,进一步降低了WRF/Noah模拟的暖、干偏差,模拟温度、湿度的均方根误差分别由5.81°C降低至5.46°C,由1.13 g/kg降低至1.08 g/kg。上述结果表明:充分农业灌溉对陆面过程产生影响,以及采用高精度的土壤数据能够显著提高WRF/Noah模式在中亚费尔干纳盆地的模拟精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号