首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
含砷尾矿中砷(As)及伴生元素铊(Tl)等毒性元素易向周边水和土壤介质中迁移,揭示尾矿中毒性元素的矿相特征及其释放机制具有重要意义。本研究以某雄黄矿区含砷尾矿为研究对象,结合化学分析、矿物学表征等手段,通过静态浸出实验探究含砷尾矿中As和Tl的矿相特征及其释放机制。研究结果表明,含砷尾矿中As和Tl的环境行为明显受到其矿相特征及赋存形态影响。矿物学分析结果显示尾矿中As的主要矿物相为砷铂矿和砷铁矿,矿物解离度表明砷矿物处于风化状态,As释放风险较高;而Tl则以伴生元素形式存在于Ca、Mn和Mg等矿物相中,这些矿物的沉淀溶解控制着尾矿中Tl的释放。尾矿中As主要以铁锰氧化物结合态和有机结合态存在,Tl主要以铁锰氧化物结合态和残渣态存在。酸性浸出条件下金属的活性态比例增高,可交换态As由0.29%上升至1.67%,可交换态Tl从5.46%升高至8.67%;尾矿中As释放加强而Tl受到抑制,表明尾矿中As与Tl释放存在竞争关系。As的浸出符合双常数模型,为多因素控制的物理和化学过程;Tl的浸出符合抛物线扩散模型,由结构掺入和表面吸附等扩散机制控制。本研究明确了含砷尾矿As和Tl的释放特性、化...  相似文献   

2.
<正> 雄黄和雌黄是一种含砷的硫化物矿物,其分子式前者为AsS,含砷70.1%;后者为As_2S_3,含砷60.98%。矿床属低温热液型,多以充填方式产于砂岩、页岩和石灰岩的裂隙中,呈脉状、囊状分布。矿石矿物主要是雄黄和雌黄,有时亦与毒砂、胶黄铁矿、白铁矿、辉锑矿、辰砂、方铅矿等共生,脉石矿物为石英、玉髓、方解石、白云石等。一般规定矿石的边界品位As 为3%,最低工业品位As 为5%。矿石中除As 外常含有Ga、Tl、Se、Au、Sb、Hg 等可综合利用的有益元素。国内目前已知的雄黄-雌黄矿床有9个,分布于中南区和西南区7省,总储量不到×万吨  相似文献   

3.
毒砂是常见的含砷硫化物矿物,其化学式为FeAsS,它的氧化还原过程密切与砷的释放和滞留有关。本次研究采用氧化亚铁硫杆菌(Thiobacillus ferrooxidans)和嗜酸铁还原菌(A.CryptumJF-5)分别代表生物氧化过程和还原过程,将其与毒砂连续作用30 d,从地球化学和次生矿物学角度讨论氧化还原过程对毒砂中砷释放的影响。结果表明,Thiobacillus ferrooxidans与毒砂作用30 d其砷的释放浓度要比非生物条件高3倍,生物氧化作用后的毒砂红外光谱、X射线衍射仪和扫描电镜同时显示出现结晶度更好的黄钾铁矾(KFe_3(SO_4)~2OH)_6。这些氧化蚀变后的毒砂再与A.CryptumJF-5作用30 d,高活性的JF-5(pH=2)要高于低活性的JF-5(pH=3)80 mg/L。这表明还原过程能够引起氧化过程中释放-再固定的砷从次生矿物中释放出来。这些还原次生矿物的红外光谱在793 cm~(-1)波数出现一个弱振动,XPS结果表明微生物还原过程引起砷的价态从As(V)变为As(III)。SEM电镜揭示还原过程引起次生矿物形貌出现明显的变化。  相似文献   

4.
湖南石门黄水溪受历史雄黄矿区污染严重,溪流中砷昼夜变化及藻-砷矿物水岩作用昼夜规律的研究对认识该流域中砷的迁移行为和控制污染具有重要意义。本研究野外调查了砷浓度的昼夜变化及其水化学参数,实验分离出黄水溪藻种并且模拟了光合作用下藻的生长与砷矿物(雄黄)释砷动力学过程。研究结果表明,黄水溪流中砷浓度范围在0.8~1.1 mg/L之间,夜晚降低,白天上升,且湖口处砷分层效应最为明显,温度、pH值、溶解氧及碳酸根含量与砷浓度变化规律一致,但叶绿素a和碳酸氢根含量与砷浓度变化规律相反;黄水溪藻种丰富,分离获得了小球藻、水绵、栅藻等多种藻类;在实验中,相比于纯雄黄,低浓度藻能够促使每克雄黄在48 h作用后释放182.1 mg的As(Ⅲ)和459.3 mg的As(V);中浓度藻存在显著的吸收现象,且As(Ⅲ)优于As(V);高浓度藻促进雄黄释放,显著提高As(V)释放量,是纯雄黄释放的2.9倍。本文实验结果表明,昼夜变化能改变砷的浓度和价态,其中藻的存在起着重要的作用。  相似文献   

5.
微生物参与铁氧化物矿物的还原性溶解是高砷地下水形成的关键过程,其中具有砷还原功能的微生物如何参与含水层砷释放的生物地球化学过程亟待研究.利用从江汉平原典型高砷含水层中厌氧条件下分离出的四株细菌(Citrobacter sp.JH-1、Clostridium sp.JH-6、Exiguobacterium sp.JH-13、Paenibacillus sp.JH-33),通过室内厌氧模拟培养实验,查明其砷、铁还原能力,并通过分别与铁氧化物矿物及原位沉积物共同培养,探究原位含水层微生物参与的砷释放机理.结果表明:四株细菌均具有厌氧条件下砷、铁还原功能,Citrobacter sp.JH-1砷还原能力最强,96 h内还原的As(Ⅴ)浓度为2.22 μmol/L.其中Citrobacter sp.JH-1不仅可在厌氧和有氧条件下还原溶液中的As(Ⅴ),还可在厌氧条件下还原溶液中的Fe(Ⅲ)和无定型的水铁矿,在与含水层沉积物共培养12 d后,沉积物中铁与砷的释放量分别为510 mg/kg及1 150 μg/kg.江汉平原含水层中的原位微生物兼具砷/铁还原功能,在厌氧条件下可还原沉积物中的铁氧化物矿物并促进砷的释放,为深入揭示高砷地下水成因机理与地下水砷污染的防控提供重要科学依据.   相似文献   

6.
硫酸盐还原菌是厌氧环境中参与砷形态转化的重要微生物种群,其介导的生物地球化学循环过程对铁氧化物表面吸附态砷迁移转化的影响亟待深入研究.选取江汉平原典型高砷含水层原位沉积物分离纯化出一株严格厌氧硫酸盐还原菌Desulfovibrio JH-S1,对其进行砷和铁还原能力鉴定,并通过模拟培养实验探究硫酸盐还原菌参与下的铁矿物相转化对吸附态砷迁移的影响.Desulfovibrio JH-S1具有Fe(III)还原能力,无硫和有硫体系中Fe(III)均能被还原,但在硫酸盐充足条件下铁还原量显著增加;该菌株不具备As(V)还原能力,但添加硫酸盐的培养体系中As(V)去除率可达96%以上.Desulfovibrio JH-S1能够还原硫酸盐从而促进载砷的水铁矿还原转化为纤铁矿,并导致吸附的砷释放.江汉平原高砷含水层土著硫酸盐还原菌兼具硫酸盐/铁还原功能,参与了高砷含水层系统中砷-铁-硫耦合循环,对高砷地下水的形成具有重要作用.   相似文献   

7.
碳酸盐型尾矿在缓冲期/中性矿山废水(NMD)释放期的重金属污染问题易被忽视。本文以广西大厂锡石-硫化物尾矿作为研究对象,采用柱淋滤实验方法,探讨碳酸盐型尾矿在缓冲期重金属的释放机制,为此类型尾矿重金属污染的防治提供依据。实验结果表明,大厂尾矿在缓冲期(约7年,pH值为6. 6~8. 0)存在Sb、Zn、Cd、As(Pb)释放污染问题。在尾矿堆放初期(0. 5年,pH值由7. 6降至7. 2),Zn、Sb、Cd快速、大量释出;中期(0. 5~2. 5年,pH值由7. 2波动升高至8. 0),Sb较平稳释出;后期(2. 5~7年,pH值变化范围为8. 0~6. 6,呈降低趋势),受气温及pH值影响,As、Sb(Pb)呈波动或间歇振荡释出,即在夏季高温、pH值较高时,释出元素浓度较高,反之,在冬季低温、pH值较低时,释出元素浓度较低。重金属的释放与尾矿中硫化物的氧化程度高低及氧化先后顺序有关。这些矿物的氧化顺序大致为:闪锌矿(Zn、Cd)、辉锑锡铅矿(Sb)→脆硫锑铅矿(Sb)→毒砂(As)、方铅矿(Pb)。因此,对于(广西大厂)碳酸盐型尾矿在缓冲期的重金属污染应分阶段、季节(夏季),采取有针对性的防治措施;在缓冲期(7年)后应注意尾矿酸性矿山废水(AMD)+重金属(如As、Sb)复合污染的防治。  相似文献   

8.
通过两种还原型微生物铁还原菌JF-5和硫酸盐还原菌SRB对模拟酸矿废水中Fe~(3+)和SO~(2-)_4的还原作用合成纳米FeS,并将该生物纳米FeS包覆在灰岩表面,以提高灰岩可渗透反应墙(PRBs)对酸矿废水中砷的去除能力。通过批吸附实验研究As(Ⅴ)的静态吸附机理,柱实验研究As(Ⅴ)在包覆灰岩柱中的动态吸附和迁移,结果表明,包覆层生物FeS粒径为纳米级,并呈现一定晶形,能有效提高灰岩表面的比表面积和对As(Ⅴ)的吸附能力,红外光谱分析表明化学吸附为主要吸附机制;生物纳米FeS包覆灰岩静态吸附实验最大吸附量为187.46μg/g,达到纯灰岩吸附量(6.64μg/g)的30倍;JF-5和SRB形成的生物包覆吸附性质优于SRB和Fe(Ⅱ),二者对As(Ⅴ)的吸附能力都远大于纯灰岩对As(Ⅴ)的滞留能力。  相似文献   

9.
雄黄是我国常用的矿物类中药,由于晶体空间结构不同,可分为α雄黄(AsS)和β雄黄(As4S4)。雄黄受氧化作用会产生剧毒物质砒霜(As2O3),其中β雄黄因空间结构关系更易被氧化,因此对矿物药雄黄的成分鉴定和质量评价具有重要的意义。常用的分析雄黄中砷及其他元素的方法(原子吸收光谱法、电感耦合等离子体质谱法、高效液相色谱-质谱法等)是通过测定总砷、价态砷和其他相关元素实现对雄黄的鉴别和有害成分的检测,分析过程复杂,试剂消耗大,需对样品进行破坏,而且不能直接对矿物结构进行判定。本文采用薄片鉴定、X射线衍射和电子探针对来自代表性生产地贵州思南和湖南石门的6种药用雄黄样品进行鉴别和质量评价。首先通过薄片鉴定初步确定雄黄样品的主要成分及伴生矿物,进一步利用X射线粉晶衍射和电子探针技术对雄黄的主要成分、伴生矿物进行半定量分析,再利用电子探针研究雄黄中As、S、O等元素的赋存状态,在这些技术综合鉴定的基础上,对收集的雄黄进行质量评价。分析结果显示:产自贵州思南的1号矿药由石英(82.8%)、方解石(9.5%)和白云石(7.7%)组成,2号矿药由α雄黄(64.7%)和石英(35.3%)组成;产自湖南石门的6号矿药由β雄黄(86.5%)和电气石(13.5%)组成,3号和4号矿药由α雄黄单矿物组成,5号矿药由β雄黄单矿物组成,3号、4号和5号三个样品中As含量大于70%,符合药典规定;电子探针分析样品中均未检测到砒霜,总体上表明湖南产的雄黄品质较高。研究表明,X射线粉晶衍射法利用了衍射图谱与晶体结构的一一对应性,找到不同矿物药样品的专属特性,而对于多组分矿物药样品,只要混合组分恒定,其衍射图谱就相对稳定,具有指纹特征;电子探针利用As、O等元素的赋存状态,可以有效地对雄黄的质量进行评价。X射线衍射和电子探针技术的结合用于鉴定雄黄矿物药是一种极为有效、可行的办法,与传统方法相比更为快速、经济。  相似文献   

10.
锑雌黄在我国的首次发现和研究   总被引:1,自引:0,他引:1  
锑雌黄是1970年A.Kato等人发现的新矿物。本文是在我国广西水落砷矿床中首次发现的该矿物,它与雄黄、雌黄和黄铁矿共生。锑雌黄为金黄色,柠檬黄色。纤维状集合体 呈现绢丝光泽,油脂光泽。反光下为灰白色,带淡红色。弱非均质。强双反射。内反射金黄色。比重4.0。 电子探针7个分析结果分别为(%);As51.7,53.7,54.8,53.4,55.0,51.18,54.81;S38.436.6,37.3,37.43,38.5,38.93,34.29;Sb9.8,10.5,8.7,9.0,6.81,9.90,10.90。总计99.9,100.8,100.8,99.83,100.31,100.01,100.0。换算成化学式分别为(As,Sb)_(11.6)S_(18),(As,Sb)_(13.1)S_(18),(As,Sb)_(12.5)S_(18),(As,Sb)_(11.8)S_(18),(As,Sb)_(11.8)S_(18),As,Sb)_(11.4)S_(18),(As,Sb)_(13.5)S_(18)。 差热分析在297℃,367℃,505℃,714℃,和761℃分别有五个吸热谷。X射线粉晶分析主要谱线();6.30(10),5.40(7),4.75(8),3.49(9),3.165(5),2.240(5),2.130(5),1.842(8),1.587(5)。  相似文献   

11.
Arsenic sulfide (AsS (am), As2S3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH∼2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As2S3 (am), orpiment, AsS (am), and realgar, respectively.Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ∼1.14 to 13 times and that pH values decrease by ∼0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase.Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As2S3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH∼8 and temperature 25 to 40°C, and pyrite activation energies are ∼52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As2S3 (am). Low activation energies of As2S3 (am) indicate that diffusion may be rate controlling.Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.  相似文献   

12.
Formation and dissolution of secondary arsenic minerals often play significant roles in controlling arsenic mobility in contaminated environments, especially in sulfide mines. Weathering of the orpiment and realgar-bearing tailings from the Shimen realgar deposit, the largest realgar deposit in Asia, were studied. An integrated mineralogical analysis by using X-ray powder diffraction (XRD), Raman spectrum, scanning electron microscope (SEM) and transmission electron microscope (TEM) reveals four kinds of As-bearing secondary minerals including arsenic oxides, arsenates, As-gypsum, and As-Fe minerals. The precipitation of arsenates is due to interaction of As-bearing run-off waters and the underlying carbonate rocks, or the transformation of gypsum into arsenates or As-bearing gypsum through SO42-/HAsO42- substitution. Ca-arsenates are mainly weilite and pharmacolite with Ca/As atomic ratio of 1. Scanning transmission X-ray microscope (STXM) and X-ray absorption fine structure (XAFS) reveal that the valence of arsenic is mainly +3 and +5.  相似文献   

13.
We present an approach for determining source terms for modeling trace element release from minerals, using arsenic (As) as an example. The source term function uses laboratory-measured mineral dissolution rates to predict the time rate of change of As concentrations (mol/L s) released to water by the dissolving mineral. Application of this function to As-bearing minerals (realgar, orpiment, arsenopyrite, scorodite, pyrite, and jarosite) in air saturated water at 25 °C shows that mineralogy, grain size and pH are important factors affecting the As source term while DO concentration and temperature are relatively unimportant for conditions found in typical aquifers. The derived function shows that the source term decreases as a function of (1  t/tL)2, where tL is the grain lifetime, due to the shrinkage of the mineral grains as they dissolve. For some models, either a constant or an instantaneous term might be used, provided that certain time constraints are met. The methods outlined in this paper are intended to help bridge the gap between laboratory measurements and field-based models. Although this paper uses As as an example, the methods are general and can be used to predict source terms for other mineral-derived trace elements to groundwater.  相似文献   

14.
含水层沉积物中含铁矿物的特征与活性会影响砷的迁移转化行为。通过内蒙古含水层沉积物含铁矿物的溶解、还原动力学实验,研究了沉积物含铁矿物特征和活性及其与砷运移的关系。结果表明,沉积物中具还原活性的铁氧化物总量(m0)与岩性有关,细砂为52 μmol/g,黏土为45 μmol/g。初始还原速率k′均在10-5 s-1的数量级。表征活性均匀度的参数γ值介于合成铁氧化物矿物和表层沉积物之间。沉积物中Fe(Ⅲ)氧化物的还原活性主要介于人造纤铁矿与针铁矿的活性水平范围内。沉积物中可能存在两类活性水平不同的Fe(Ⅲ)氧化物。As更倾向于吸附在活性较强的Fe(Ⅲ)氧化物上。还原环境中,活性较强的Fe(Ⅲ)氧化物的还原性溶解,促进了沉积物中砷的释放。  相似文献   

15.
蒲阳河流域地下水水化学及同位素特征   总被引:3,自引:2,他引:1       下载免费PDF全文
保定西部山前地区位于太行山及华北平原交界带,为缓解极端气候灾害对生产生活的影响,维持地下水资源的可持续开发利用,开展相关的地下水水化学及同位素特征研究。研究区地下水化学类型以HCO3—Ca·Mg、HCO3·SO4—Ca·Mg及SO4·HCO3—Ca·Mg为主,区内地下水主要来源于大气降水,流域内地表水补给地下水;地下水中化学成分为Ca2+、Mg2+、HCO-3、SO2-4,主要来源于岩石风化作用,同时受到人类活动的影响,地下水中硝酸盐含量明显升高;由于受到褶皱构造的控制,流域的上游及平原区均出现年龄大于60年的地下水,多数岩溶水年龄较复杂,从现代水到大于60年的水均有分布。研究成果为流域内水资源的合理开发利用提供建议,区内岩溶地下水的开发将在一定程度上缓解极端天气的影响。  相似文献   

16.
Arsenic in the Muteh gold mining district, Isfahan, Iran   总被引:1,自引:1,他引:0  
Following the appearance of symptoms of arsenic toxicity in the inhabitants of villages in the Muteh gold mining region, central Iran, the concentration of this element in various parts of biogeochemical cycle is investigated. For this purpose, rock, groundwater, soil, plant, livestock hair and wool, and human hair samples are collected and analysed. Total arsenic content ranges from 23 to 2,500?mg/kg in rock samples, 7?C1,061???g/l in water, 12?C232?mg/kg in soil, 0.5?C16?mg/kg in plant samples, 4.10?C5.69?mg/kg in livestock hair and wool, and 0.64?C5.82?mg/kg in human hair. Arsenic concentration in various parts of biogeochemical cycle near the gold deposit in a metamorphic complex, and also close to the gold-processing plant, is very high and decreases exponentially with increasing distance from them. Arsenic concentration in water from a well close to the Muteh gold mine is above 1?mg/L. Arsenic in hair samples taken from local inhabitants is above the recommended levels, and the control samples in Shahre-Kord city. Arsenic concentration is higher in male population and correlates positively with age. It is suggested that arsenic resulting from the decomposition of ore mineral such as orpiment (As2S3), realgar (As2S2) and arsenopyrite (FeAsS) is responsible for polluting natural resources and the human intake via drinking water and the food chain. Gold mining and processing has undoubtedly enhanced the release of arsenic and intensified the observed adverse effects in Muteh area.  相似文献   

17.
Soil, mine tailing, and waste dump profiles above three mesothermal gold deposits in the Bohemian Massif with different anthropogenic histories have been studied. Their mineralogical, major element, and arsenic (As) contents and the contents of secondary arsenic minerals were analyzed. The As-bearing minerals were concentrated and determined using X-ray diffraction (XRD) analysis, the Debye-Scherrer powder method, scanning electron microscopy (SEM), and energy-dispersive microanalysis (EDAX). The amorphous hydrous ferric oxides (HFO), As-bearing goethite, K-Ba- or Ca-Fe- and Fe- arsenates pharmacosiderite, arseniosiderite, and scorodite, and sulfate-arsenate pitticite were determined as products of arsenopyrite or arsenian pyrite oxidation. The As behaviour in the profiles studied differs in dependence on the surface morphology, chemical and mineralogical composition of the soil, mine wastes or tailings, oxidation conditions, pH, presence of (or distance from) primary As mineralization in the bedrock, and duration of the weathering effect. Although the primary As mineralization and the bedrock chemical composition are roughly similar, there are distinct differences in the As behaviour amongst the Mokrsko, Roudný and Kaperské Hory deposits.  相似文献   

18.
从安徽铜陵杨山冲尾矿库采集表层尾矿样品,通过砷富集培养,从3份样品中筛选得到3株具有较强As(Ⅲ) 抗性的细菌 WK-21、WK-31 和 WK-32,用不同 NaAsO2 浓度的 LB 培养基对菌株进行砷抗性检测,结果这3株菌分别能耐受32、56和50 mmol/L的As(Ⅲ),具有较高的耐砷性.对这3株菌进行不同梯度浓度 As(Ⅲ) 环境中的生长规律研究,结果表明砷在低浓度时对细菌生长有轻微促进作用或者几乎没影响,但随着砷浓度增大,抑制作用明显增强.根据对这3株菌进行形态观察、生理生化鉴定以及16S rDNA序列比对分析,鉴定出这3株菌分别属于Arthrobacter sp.、Rhodococcus equi和Paenibacillus sp.菌属.由于这些菌株分离于尾矿库的尾矿堆中,因此,本文研究结果为进一步研究尾矿库金属污染的微生物修复及微生物抗金属机制提供了材料.  相似文献   

19.
Gold mineralisation at Zarshuran, northwestern Iran, is hosted by Precambrian carbonate and black shale formations which have been intruded by a weakly mineralised granitoid. Granitoid intrusion fractured the sedimentary rocks, thereby improving conditions for hydrothermal alteration and mineralisation. Silicification is the principal hydrothermal alteration along with decalcification and argillisation. Three hydrothermal sulphide mineral assemblages have been identified: an early assemblage of pyrrhotite, pyrite and chalcopyrite; then widespread base metal sulphides, lead-sulphosalts and zoned euhedral arsenical pyrite; and finally late network arsenical pyrite, massive and colloform arsenical pyrite, colloform sphalerite, coloradoite, and arsenic–antimony–mercury–thallium-bearing sulphides including orpiment, realgar, stibnite, getchellite, cinnabar, lorandite and a Tl-mineral, probably christite. Most of the gold at Zarshuran is detectable only by quantitative electron microprobe and bulk chemical analyses. Gold occurs mainly in arsenical pyrite and colloform sphalerite as solid solution or as nanometre-sized native gold. Metallic gold is found rarely in hydrothermal quartz and orpiment. Pure microcrystalline orpiment, carbon-rich shale, silicified shale with visible pyrite grains and arsenic minerals contain the highest concentrations of gold. In many ways Zarshuran appears to be similar to the classic Carlin-type sediment-hosted disseminated gold deposits. However, relatively high concentrations of tellurium at Zarshuran, evidenced by the occurrence of coloradoite (HgTe), imply a greater magmatic contribution in the mineralising hydrothermal solutions than is typical of Carlin-type gold deposits. Received: 13 May 1999 / Accepted: 2 February 2000  相似文献   

20.
Gözeçukuru As-Sb-Pb-Zn mine is located 1.2 km NW of Sahin village and 22 km west of Kütahya in NW Turkey. The aim of this study is to explain the genetic characteristics of the As-Sb deposits by using multivariate statistical analysis methods. Low-grade metamorphic rocks of the upper Paleozoic Sahin Formation occur as the basement of the study area. Cenozoic volcano-sedimentary units (Tavsanli volcanites and Emet Formation) overlie the Sahin Formation unconformably. The mineralization occurs mainly as veins and partly as disseminations and fillings of interstices in the rhyodacitic and rhyolitic tuffs of Tavsanli Volcanics. Common primary ore minerals are stibnite, realgar, galena, sphalerite, pyrite and arsenopyrite, and secondary minerals are orpiment, senarmontite and valentinite. Barite is the dominant gangue mineral, with a small amount of quartz, calcite and dolomite. Average As, Sb, Pb, Zn and Ba concentrations in the samples from the study area are 6.04%, 4938 ppm, 4589 ppm, 1.17% and 10.36 % respectively. Three significant groups appear in the cluster analysis of ore samples. First group consists of Pb-Ag and Zn-Cd. The second group consists of Sb-Tl-Hg and As. The last group is the Ba-Sr. There are three significant factors in the factor analysis. First factor reflects the formation of primary sulphide minerals, the second factor represents the formation of low temperature sulphide and sulphosalt minerals and the last factor depicts interstices-filling mineralization. Average homogenization temperature of the fluid inclusion in barites is 221 °C. Geological, petrographical and geochemical data suggest that the Gözeçukuru As-Sb deposit was formed under epithermal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号