首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
 Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5 geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6 spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform. Received: 2 November 1999 / Accepted: 11 July 2000  相似文献   

2.
王燚  姜效典 《测绘学报》2017,46(11):1802-1811
从球冠谐理论出发,详细推导了球冠坐标系下扰动重力梯度的无奇异性计算公式。基于Tikhonov正则化方法,利用GOCE卫星实际观测数据解算局部重力场球冠谐模型。数值计算表明,基于扰动重力梯度的球冠谐分析建模方法能够有效地恢复局部重力场中的短波信号,与GO_CONS_GCF_2_DIR_R5模型的差异在±0.3×10~(-5) m/s~2水平。  相似文献   

3.
Spherical cap harmonic model for mapping and predicting regional TEC   总被引:1,自引:0,他引:1  
An approach to modeling the regional ionospheric total electron content (TEC) based on spherical cap harmonic analysis is presented. This approach not only provides a better regional TEC mapping accuracy, but also the capability for ionospheric model prediction based on spectrum analysis and least squares collocation. Unlike conventional approaches, which predict the immediate TEC with models using current observations, the spherical cap harmonic approach utilizes models using past observations to predict a model which will provide future TEC values. A significant advantage in comparison with conventional approaches is that the spherical cap harmonic approach can be used to predict the long-term TEC with reasonable accuracy. This study processes a set of GPS data with an observation time span of 1 year from two GPS networks in China. The TEC mapping accuracy of the spherical cap harmonic model is compared with the polynomial model and the global ionosphere model from IGS. The results show that the spherical cap harmonic model has a better TEC mapping accuracy with smoother residual distributions in both temporal and spatial domains. The TEC prediction with the spherical cap harmonic model has been investigated for both short- and long-term intervals. For the short-term interval, the prediction accuracies for the latencies of 1-day, 2-days, and 3-days are 2.5 TECU, 3.5 TECU, and 4.5 TECU, respectively. For the long-term interval, the prediction accuracy is 4.5 TECU for a 2-month latency.  相似文献   

4.
This study demonstrates that in mountainous areas the use of residual terrain model (RTM) data significantly improves the accuracy of vertical deflections obtained from high-degree spherical harmonic synthesis. The new Earth gravitational model EGM2008 is used to compute vertical deflections up to a spherical harmonic degree of 2,160. RTM data can be constructed as difference between high-resolution Shuttle Radar Topography Mission (SRTM) elevation data and the terrain model DTM2006.0 (a spherical harmonic terrain model that complements EGM2008) providing the long-wavelength reference surface. Because these RTM elevations imply most of the gravity field signal beyond spherical harmonic degree of 2,160, they can be used to augment EGM2008 vertical deflection predictions in the very high spherical harmonic degrees. In two mountainous test areas—the German and the Swiss Alps—the combined use of EGM2008 and RTM data was successfully tested at 223 stations with high-precision astrogeodetic vertical deflections from recent zenith camera observations (accuracy of about 0.1 arc seconds) available. The comparison of EGM2008 vertical deflections with the ground-truth astrogeodetic observations shows root mean square (RMS) values (from differences) of 3.5 arc seconds for ξ and 3.2 arc seconds for η, respectively. Using a combination of EGM2008 and RTM data for the prediction of vertical deflections considerably reduces the RMS values to the level of 0.8 arc seconds for both vertical deflection components, which is a significant improvement of about 75%. Density anomalies of the real topography with respect to the residual model topography are one factor limiting the accuracy of the approach. The proposed technique for vertical deflection predictions is based on three publicly available data sets: (1) EGM2008, (2) DTM2006.0 and (3) SRTM elevation data. This allows replication of the approach for improving the accuracy of EGM2008 vertical deflection predictions in regions with a rough topography or for improved validation of EGM2008 and future high-degree spherical harmonic models by means of independent ground truth data.  相似文献   

5.
基于通量均衡基准的地壳垂直形变场逼近的Fourier分析法   总被引:1,自引:1,他引:0  
本文根据地壳运动的全球通量均衡假说建立了地壳垂直形变场的分析模型,分析了以往作者所研究的球谐函数和球冠谐函数模型的优缺点,着重推导了在密切平面坐标系下该模型的Fourier级数解,该模型一方面可以简单地应用于地壳垂直形变场的逼近,另一方面为采用谱分析法提取地壳垂直形变场信息提供了理论依据。  相似文献   

6.
The theoretical differences between the Helmert deflection of the vertical and that computed from a truncated spherical harmonic series of the gravity field, aside from the limited spectral content in the latter, include the curvature of the normal plumb line, the permanent tidal effect, and datum origin and orientation offsets. A numerical comparison between deflections derived from spherical harmonic model EGM96 and astronomic deflections in the conterminous United States (CONUS) shows that correcting these systematic effects reduces the mean differences in some areas. Overall, the mean difference in CONUS is reduced from −0.219 arcsec to −0.058 arcsec for the south–north deflection, and from +0.016 arcsec to +0.004 arcsec for the west–east deflection. Further analysis of the root-mean-square differences indicates that the high-degree spectrum of the EGM96 model has significantly less power than implied by the deflection data. Received: 9 December 1997 / Accepted: 21 August 1998  相似文献   

7.
We present an alternate mathematical technique than contemporary spherical harmonics to approximate the geopotential based on triangulated spherical spline functions, which are smooth piecewise spherical harmonic polynomials over spherical triangulations. The new method is capable of multi-spatial resolution modeling and could thus enhance spatial resolutions for regional gravity field inversion using data from space gravimetry missions such as CHAMP, GRACE or GOCE. First, we propose to use the minimal energy spherical spline interpolation to find a good approximation of the geopotential at the orbital altitude of the satellite. Then we explain how to solve Laplace’s equation on the Earth’s exterior to compute a spherical spline to approximate the geopotential at the Earth’s surface. We propose a domain decomposition technique, which can compute an approximation of the minimal energy spherical spline interpolation on the orbital altitude and a multiple star technique to compute the spherical spline approximation by the collocation method. We prove that the spherical spline constructed by means of the domain decomposition technique converges to the minimal energy spline interpolation. We also prove that the modeled spline geopotential is continuous from the satellite altitude down to the Earth’s surface. We have implemented the two computational algorithms and applied them in a numerical experiment using simulated CHAMP geopotential observations computed at satellite altitude (450 km) assuming EGM96 (n max = 90) is the truth model. We then validate our approach by comparing the computed geopotential values using the resulting spherical spline model down to the Earth’s surface, with the truth EGM96 values over several study regions. Our numerical evidence demonstrates that the algorithms produce a viable alternative of regional gravity field solution potentially exploiting the full accuracy of data from space gravimetry missions. The major advantage of our method is that it allows us to compute the geopotential over the regions of interest as well as enhancing the spatial resolution commensurable with the characteristics of satellite coverage, which could not be done using a global spherical harmonic representation. The results in this paper are based on the research supported by the National Science Foundation under the grant no. 0327577.  相似文献   

8.
S. Bian  J. Menz 《Journal of Geodesy》1998,72(7-8):473-481
In this paper an alternative approach to spherical harmonic analysis is investigated which uses piecewise linear interpolations (PLIs) to replace conventional block mean values (BMVs). Detailed formulations for using PLIs in spherical harmonic analysis are systematically developed. Research shows that BMVs give rise to larger errors than PLIs. Error estimations for the two approaches are given, convincingly showing that PLIs yield much better results than BMVs. Many numerical examples are illustrated and numerically show that PLIs are more reliable and applicable than BMVs. Received: 8 October 1996 / Accepted: 6 March 1998  相似文献   

9.
The determination of the gravimetric geoid is based on the magnitude of gravity observed at the surface of the Earth or at airborne altitude. To apply the Stokes’s or Hotine’s formulae at the geoid, the potential outside the geoid must be harmonic and the observed gravity must be reduced to the geoid. For this reason, the topographic (and atmospheric) masses outside the geoid must be “condensed” or “shifted” inside the geoid so that the disturbing gravity potential T fulfills Laplace’s equation everywhere outside the geoid. The gravitational effects of the topographic-compensation masses can also be used to subtract these high-frequent gravity signals from the airborne observations and to simplify the downward continuation procedures. The effects of the topographic-compensation masses can be calculated by numerical integration based on a digital terrain model or by representing the topographic masses by a spherical harmonic expansion. To reduce the computation time in the former case, the integration over the Earth can be divided into two parts: a spherical cap around the computation point, called the near zone, and the rest of the world, called the far zone. The latter one can be also represented by a global spherical harmonic expansion. This can be performed by a Molodenskii-type spectral approach. This article extends the original approach derived in Novák et al. (J Geod 75(9–10):491–504, 2001), which is restricted to determine the far-zone effects for Helmert’s second method of condensation for ground gravimetry. Here formulae for the far-zone effects of the global topography on gravity and geoidal heights for Helmert’s first method of condensation as well as for the Airy-Heiskanen model are presented and some improvements given. Furthermore, this approach is generalized for determining the far-zone effects at aeroplane altitudes. Numerical results for a part of the Canadian Rocky Mountains are presented to illustrate the size and distributions of these effects.  相似文献   

10.
Errors are considered in the outer zone contribution to oceanic undulation differences as obtained from a set of potential coefficients complete to degree 180. It is assumed that the gravity data of the inner zone (a spherical cap), consisting of either gravity anomalies or gravity disturbances, has negligible error. This implies that error estimates of the total undulation difference are analyzed. If the potential coefficients are derived from a global field of 1°×1° mean anomalies accurate to εΔg=10 mgal, then for a cap radius of 10°, the undulation difference error (for separations between 100 km and 2000 km) ranges from 13 cm to 55 cm in the gravity anomaly case and from 6 cm to 36 cm in the gravity disturbance case. If εΔg is reduced to 1 mgal, these errors in both cases are less than 10 cm. In the absence of a spherical cap, both cases yield identical error estimates: about 68 cm if εΔg=1 mgal (for most separations) and ranging from 93 cm to 160 cm if εΔg=10 mgal. Introducing a perfect 30-degree reference field, the latter errors are reduced to about 110 cm for most separations.  相似文献   

11.
 The Cartesian moments of the mass density of a gravitating body and the spherical harmonic coefficients of its gravitational field are related in a peculiar way. In particular, the products of inertia can be expressed by the spherical harmonic coefficients of the gravitational potential as was derived by MacCullagh for a rigid body. Here the MacCullagh formulae are extended to a deformable body which is restricted to radial symmetry in order to apply the Love–Shida hypothesis. The mass conservation law allows a representation of the incremental mass density by the respective excitation function. A representation of an arbitrary Cartesian monome is always possible by sums of solid spherical harmonics multiplied by powers of the radius. Introducing these representations into the definition of the Cartesian moments, an extension of the MacCullagh formulae is obtained. In particular, for excitation functions with a vanishing harmonic coefficient of degree zero, the (diagonal) incremental moments of inertia also can be represented by the excitation coefficients. Four types of excitation functions are considered, namely: (1) tidal excitation; (2) loading potential; (3) centrifugal potential; and (4) transverse surface stress. One application of the results could be model computation of the length-of-day variations and polar motion, which depend on the moments of inertia. Received: 27 July 1999 / Accepted: 24 May 2000  相似文献   

12.
The evaluation of deflections of the vertical for the area of Greece is attempted using a combination of topographic and astrogeodetic data. Tests carried out in the area bounded by 35°≤ϕ≤42°, 19°≤λ≤27° indicate that an accuracy of ±3″.3 can be obtained in this area for the meridian and prime vertical deflection components when high resolution topographic data in the immediate vicinity of computation points are used, combined with high degree spherical harmonic expansions of the geopotential and isostatic reduction potential. This accuracy is about 25% better than the corresponding topographic-Moho deflection components which are evaluated using topographic and Moho data up to 120 km around each station, without any combination with the spherical harmonic expansion of the geopotential or isostatic reduction potential. The accuracy in both cases is increased to about 2″.6 when the astrogeodetic data available in the area mentioned above are used for the prediction of remaining values. Furthermore the estimation of datum-shift parameters is attempted using least squares collocation.  相似文献   

13.
 A fast spherical harmonic approach enables the computation of gravitational or magnetic potential created by a non-uniform shell of material bounded by uneven topographies. The resulting field can be evaluated outside or inside the sphere, assuming that density of the shell varies with latitude, longitude, and radial distance. To simplify, the density (or magnetization) source inside the sphere is assumed to be the product of a surface function and a power series expansion of the radial distance. This formalism is applied to compute the gravity signal of a steady, dry atmosphere. It provides geoid/gravity maps at sea level as well as satellite altitude. Results of this application agree closely with those of earlier studies, where the atmosphere contribution to the Earth's gravity field was determined using more time-consuming methods. Received: 14 August 2000 / Accepted: 19 March 2001  相似文献   

14.
海洋局域地磁场球冠谐分析建模方法研究   总被引:3,自引:0,他引:3  
本文研究了将球冠谐分析用于海洋局域地磁场建模的理论和方法,并对建模数据的质量控制、数据的代表性、球冠极点和半角的选择、模型截至阶数的确定、球冠谐分析建模中边界效应的影响和削弱等建模中关键问题进行了深入研究,最后提出了分区建摸的思想,并构建了高精度的地磁场模型。  相似文献   

15.
The passive satellite GFZ-1 has been orbiting the Earth since April 1995. The purpose of this mission is to improve the current knowledge of the Earth's gravity field by analysing gravitational orbit perturbations observed at unique low altitudes, below 400 km. GFZ-1 is one target of the international satellite laser ranging ground network. An evaluation of the first 30 months of GFZ-1 laser tracking data led to a new version of the global GRIM4-S4 satellite-only gravity field model: GRIM4-S4G. Information was obtained from GFZ-1 data for spherical harmonic coefficients up to degree 100, which was not possible in any earlier satellite-only gravity field solution. GFZ-1's contribution to a global 5 × 5° geoid and gravity field representations is moderate but visible with a 1 cm and 0.1 mGal gain in accuracy on a level of 75 cm and 5 mGal, respectively. Received: 10 November 1998 / Accepted: 19 April 1999  相似文献   

16.
 On the Earth and in its neighborhood, spherical harmonic analysis and synthesis are standard mathematical procedures for scalar, vector and tensor fields. However, with the advent of multiresolution applications, additional considerations about convolution filtering with decimation and dilation are required. As global applications often imply discrete observations on regular grids, computational challenges arise and conflicting claims about spherical harmonic transforms have recently appeared in the literature. Following an overview of general multiresolution analysis and synthesis, spherical harmonic transforms are discussed for discrete global computations. For the necessary multi-rate filtering operations, spherical convolutions along with decimations and dilations are discussed, with practical examples of applications. Concluding remarks are then included for general applications, with some discussion of the computational complexity involved and the ongoing investigations in research centers. Received: 13 November 2000 / Accepted: 12 June 2001  相似文献   

17.
1 IntroductionThefastFouriertransform (FFT)techniqueisaverypowerfultoolfortheefficientevaluationofgravityfieldconvolutionintegrals.Thankstothegoodcomputationefficiency ,theFFTtechnique ,inthemid_1 980s ,begantofindwidespreaduseingeoiddetermination ,whencompar…  相似文献   

18.
A comparison of different mass elements for use in gravity gradiometry   总被引:6,自引:3,他引:3  
Topographic and isostatic mass anomalies affect the external gravity field of the Earth. Therefore, these effects also exist in the gravity gradients observed, e.g., by the satellite gravity gradiometry mission GOCE (Gravity and Steady-State Ocean Circulation Experiment). The downward continuation of the gravitational signals is rather difficult because of the high-frequency behaviour of the combined topographic and isostatic effects. Thus, it is preferable to smooth the gravity field by some topographic-isostatic reduction. In this paper the focus is on the modelling of masses in the space domain, which can be subdivided into different mass elements and evaluated with analytical, semi-analytical and numerical methods. Five alternative mass elements are reviewed and discussed: the tesseroid, the point mass, the prism, the mass layer and the mass line. The formulae for the potential, the attraction components and the Marussi tensor of second-order potential derivatives are provided. The formulae for different mass elements and computation methods are checked by assuming a synthetic topography of constant height over a spherical cap and the position of the computation point on the polar axis. For this special situation an exact analytical solution for the tesseroid exists and a comparison between the analytical solution of a spherical cap and the modelling of different mass elements is possible. A comparison of the computation times shows that modelling by tesseroids with different methods produces the most accurate results in an acceptable computation time. As a numerical example, the Marussi tensor of the topographic effect is computed globally using tesseroids calculated by Gauss–Legendre cubature (3D) on the basis of a digital height model. The order of magnitude in the radial-radial component is about  ± 8 E.U. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
 When Stokes's integral is used over a spherical cap to compute a gravimetric estimate of the geoid, a truncation error results due to the neglect of gravity data over the remainder of the Earth. Associated with the truncation error is an error kernel defined over these two complementary regions. An important observation is that the rate of decay of the coefficients of the series expansion for the truncation error in terms of Legendre polynomials is determined by the smoothness properties of the error kernel. Previously published deterministic modifications of Stokes's integration kernel involve either a discontinuity in the error kernel or its first derivative at the spherical cap radius. These kernels are generalised and extended by constructing error kernels whose derivatives at the spherical cap radius are continuous up to an arbitrary order. This construction is achieved by smoothly continuing the error kernel function into the spherical cap using a suitable degree polynomial. Accordingly, an improved rate of convergence of the spectral series representation of the truncation error is obtained. Received: 21 April 1998 / Accepted: 4 October 1999  相似文献   

20.
为解决CORS系统中GNSS高程受技术条件限制精度不高的问题,贵阳市进行了区域似大地水准面精化工作。本文论述了GNSS和水准网的布设及精度,使用了3 877个点重力数据和54个GNSS水准资料,以EIGEN03C地球重力场模型作为参考重力场,由第二类Helmert凝集法完成大地水准面计算,利用球冠谐调和分析方法将GNSS水准与重力似大地水准面联合求解得出的2'!2'格网似大地水准面,在高原高差地区其精度达到"0.010 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号