首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
傅燕宁  孙义燧 《天文学报》1998,39(2):153-164
Chandrasekhar等和Sunder等讨论了具有局部各向同性速度分布的旋转椭球星系的短期(远小于哈勃时间)演化,本文运用Laskar的频率分析方法研究这种星系的长期(大于哈勃时间)演化.得到的新结论主要有:(1)这种星系存在唯一的平衡态(球对称平衡态),它是临界线性稳定的;(2)其半轴一般在平衡态的半径邻近作拟周期或近拟周期(这种近似在远大于哈勃时间后仍可行)振动,从而是长期稳定的;(3)存在一个半轴趋于零,另一个半轴趋于有限值的情形,且一般趋于零的是对称轴的轴长(从而星系趋于扁平),这意味着某些盘星系可能来源于具旋转棉球构形的星系前物质.  相似文献   

2.
本文从完整的MHD方程出发严格推导了一个旋转等离子体系统相对于平衡态作小振动的稳定性条件。该系统具有粘性、可压缩性、有自引力。同前人的工作相比较,由于本文用能量方程代替了近似关系(如绝热关系等),所以结果更加合理并具有普遍性。在一般情况下,前人的结果可以认为是本文结果的特例。同时本文还对文献[1]的稳定性充要条件提出疑义。  相似文献   

3.
本文讨论了可能影响星系旋转曲线的若干因素,特别是星系整体运动和星系内局部运动对旋转曲线的影响。  相似文献   

4.
本文利用地面光学望远镜对NGC4151进行国际联测所得的结果,通过周期日方法和逐步回归方法得到了该目标的一些较为明显的光变周期.结果表明,NGC4151存在两个主要光变周期.一个是所有光学波段存在约14天的周期,另一个是连续谱存在约30天周期,而对于Hα和Hβ则分别为24和38天的周期.  相似文献   

5.
本文研究了一个三维引力碰撞质点系统的模型,即“椭球体模型”,其中所有质点是在一个旋转椭球中心体的引力作用下运动,且它们相互之间的碰撞是非弹性的。我们用BCY语言茬TQ-6机上对这个模型的碰撞演化进行数值模拟。计算结果证实了潘加莱的结论(1911)。计算表明该系统在很快变平以后,趋于准平衡态且形成一个有限厚度的盘。盘缓慢地伸展,中心凝聚逐渐形成。这些结论与宇宙中实际的盘状结构相符。  相似文献   

6.
利用美国甚长基线干涉阵对致密陡谱源1150+497进行双波段全偏振观测,获得该源在5GHz和8GHz波段的偏振流量和偏振矢量分布结果,发现该源偏振主要集中在核心处,并通过对三个频率偏振角的拟合,首次获得了源1150+497毫角秒尺度的旋转量约为66 rad/m2.移去旋转量后,获得该源毫角秒尺度的内禀磁场分布,显示磁场矢量与喷流方向一致.  相似文献   

7.
张旭东  周济林 《天文学报》2006,47(2):175-185
最近的多普勒观测表明恒星HD 12661周围存在两颗中等偏心率轨道上运行的行星,内行星的最小质量为2.3木星质量,轨道周期为263.6天;外行星的最小质量为1.57木星质量,轨道周期为1444.5天.该系统的稳定性要求两颗行星处在平运动轨道共振.用数值方法研究了该系统形成初期在恒星气体盘作用下的轨道迁移与稳定性,计算了行星在迁移中被平运动共振俘获的概率.发现这两颗行星目前很可能正处在11:2平运动共振边缘,且运动是混沌的,从而澄清了关于系统目前构形的不同说法,并且很可能在系统形成后行星迁移到目前构形时,气体盘几乎消失了.  相似文献   

8.
陶隽  钱伯辰 《天文学报》1998,39(2):185-192
本文利用地面光学望远镜NGC4151进行国际联测所得的结果,通过周期图方法的逐步回归方法得到了该目标目标的一些较为明显的光变周期。结果表明,NGC4151存在两个主要光变周期。一个是所有光学波段存在约14天的周期,另一个是连续谱存在30天周期,而对于Hα和Hβ则分别为24和38天的周期。  相似文献   

9.
唐洁 《天文学报》2024,65(2):22
类星体有剧烈、大幅度的光变现象, 光变研究有助于建立与观测相符的理论模型. 这篇文章从密歇根大学射电天文台数据库收集了类星体3C 446射电4.8、8.0和14.5GHz波段的长期观测数据. 传统的线性方法难以分析复杂的光变现象, 文章采用了集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)方法和非线性分析方法相结合, 从混沌动力学特性、分形特性和周期性多角度对类星体光变随时间演化的规律进行了较全面的分析, 并重点对比分析了除去周期成分或混沌成分前后, 光变的周期性和非线性特性是否存在明显区别. 分析结果表明, 类星体3C 446射电波段光变资料由周期成分、趋势成分和混沌成分组成, 光变具有周期性、混沌性和分形特性. 除去混沌成分和趋势成分后的光变周期与原始光变资料的周期完全相同, 而两者的混沌和分形特性有明显不同. 从饱和关联维数来看, 重构动力学系统时, 除去周期成分和趋势成分后的光变资料比原始光变资料需要更多的独立参量, Kolmogorov熵值表明前者信息的损失率比后者大, 系统的混沌程度更高, 系统也更复杂, Hurst值表明后者自相似性和长程相关性比前者略强.  相似文献   

10.
傅燕宁  孙义燧 《天文学报》1997,38(2):119-128
本文研究振动盘中恒星的运动性质.所采用的势模型为它由一种具简单径向振动模态的Kuzmin盘和一种对数晕共同产生.得到的主要结论是:(1)恒星存在稳定且有序的近圆轨道;(2)盘振动对角动量较小的恒星及远离近圆轨道的恒星影响较大;(3)盘中大部分恒星的运动是有序的;(4)远离近圆轨道的恒星一般作混沌运动,并且最终可能逃逸,但在一个Hubble时间内实际逃逸的恒星比例较小;(5)盘振动可能是振动Kurmin盘中某些星团形成并长期维持的机制之一,盘振动幅度越大,盘中星团数目可能越多;在同一个星系盘中,角动量越大的星团数目可能越少.  相似文献   

11.
The short-term evolution of spheroidal galaxies has been explored by S. Chandrasekhar et al. and G. S. Sunder et al. In this paper, we study their long-term evolution with Laskar's method of frequency analysis. The main new results are as follows: (1) There exists a unique equilibrium, which is spherically symmetric. This equilibrium has a critical linear stability. (2) Generally speaking, the semi-axes exhibit quasiperiodic or nearly quasi-periodic (in a time scale longer than a Hubble time) oscillations around the radius of the above-mentioned equilibrium, so the equilibrium is practically stable. (3) There are cases in which one of the semi-axes tends fast to zero while the other to some finite value. The limit state is generally planar rather than linear, i.e. it is the symmetric semi-axis that tends to zero. This implies that some disk galaxies may have originated from spheroidal pregalaxy material.  相似文献   

12.
We analyze the R-and K s-band photometric profiles for two independent samples of edge-on galaxies. The thickness of old stellar disks is shown to be related to the relative masses of the spherical and disk components of galaxies. The radial-to-vertical scale length ratio for galactic disks increases (the disks become thinner) with increasing total mass-to-light ratio of the galaxies, which reflects the relative contribution of the dark halo to the total mass, and with decreasing central deprojected disk brightness (density). Our results are in good agreement with numerical models of collisionless disks that evolved to a marginally stable equilibrium state. This suggests that, in most galaxies, the vertical stellar-velocity dispersion, on which the equilibrium-disk thickness depends, is close to a minimum value that ensures disk stability. The thinnest edge-on disks appear to be low-brightness galaxies in which the dark-halo mass far exceeds the stellar-disk mass.  相似文献   

13.
Numerous U and V magnitude measurements were performed for the nucleus of the Seyfert galaxy NGC 4151 at the Crimean Laboratory of the SAI (Moscow University) in 1994–2005. Adding them to the previous data for 1968–1997 has led to a substantial increase in the confidence level of the light variations in NGC 4151 with a stable period of P G = 160.0108(7) min and a mean amplitude of 0.007 U mag (in the “active” state of the nucleus). The period of NGC 4151 agrees well with the period of 160.0101(15) min found previously in the oscillations of the Sun. It is treated as the period of a “coherent cosmic oscillation” independent of redshift z or as the period of “free cosmic vibrations” of the hydrogen atom, the main element of the Universe. The period and initial phase of the P G oscillation have been constant for 38 years of NGC 4151 observations. The new astrophysical phenomenon appears to be closely related to the quantum nonlocality of photons and is of particular interest in physics and cosmology.  相似文献   

14.
We have investigated the gas and stellar kinematics and the stellar population properties at the center of the early-type galaxy NGC 4245 with a large-scale bar by the method of two-dimensional spectroscopy. The galaxy has been found to possess a pronounced chemically decoupled compact stellar nucleus, which is at least a factor of 2.5 richer in metals than the stellar population of the bulge, and a ring of young stars with a radius of 300 pc. Star formation goes on in the ring even now; its location corresponds to the inner Lindblad resonance of the large-scale bar. According to Hubble Space Telescope data, the mean stellar age in the chemically decoupled nucleus is significantly younger than that within 0″.25 of the center. It may be concluded that we take the former ultracompact star formation ring with a radius of no more than 100 pc located at the inner Lindblad resonance of the now disappeared nuclear bar as the chemically decoupled nucleus. On the whole, the picture of star formation at the center of this gas-poor galaxy is consistent with theoretical predictions of the consequences of the secular evolution of a stellar-gaseous disk under the action of a bar or bars.  相似文献   

15.
The study of the motions of the stars that belong to a galactic satellite (i.e. a globular cluster or a dwarf galaxy orbiting a larger one) has some similarities, as well as significant differences, with that of the restricted three-body problem of celestial mechanics. The high percentage of chaotic orbits present in some models is of particular interest because it rises, on the one hand, the question of the origin of those chaotic motions and, on the other hand, the question of whether an equilibrium stellar system can be built when the bulk of the stars that make it up behave chaotically.  相似文献   

16.
As it is known, a good number of galaxies are observed to have counterrotating cores. A popular scenario to explain the formation of such galaxies is based on a secondary process of merging of galaxies with their satellites, or gas infall, or merger events between galaxies. An alternative mechanism, proposed by Voglis et al., 1991, and by Harsoula and Voglis 1998, could also be responsible for the formation of these galaxies directly from cosmological initial conditions (direct scenario). The novel mechanism was demonstrated by using quiet cosmological initial conditions in N-body simulations. In the present paper we extend our N-body simulations using clumpy initial conditions and show that this mechanism still works to create counterrotating galaxies. Counterrotation is a result of the considerable amount of memory of initial conditions surviving for times comparable to the Hubble time, despite the large degree of instability of individual orbits and the dramatic redistribution and mixing of the particles in phase space. We show, for example, that the particles remember, in a statistical sense, not only their distance from the center of mass (memory of energy), but also the initial orientation of their position relative to the direction of an external tidal field, which determines the sign and the amount of angular momentum that is transferred to the particles of the system.  相似文献   

17.
This paper summarises a numerical investigation of phase mixing in time-independent Hamiltonian systems that admit a coexistence of regular and chaotic phase space regions, allowing also for low amplitude perturbations idealised as periodic driving, friction, and/or white and coloured noise. The evolution of initially localised ensembles of orbits was probed through lower order moments and coarse-grained distribution functions. In the absence of time-dependent perturbations, regular ensembles disperse initially as a power law in time and only exhibit a coarse-grained approach towards an invariant equilibrium over comparatively long times. Chaotic ensembles generally diverge exponentially fast on a time scale related to a typical finite time Lyapunov exponent, but can exhibit complex behaviour if they are impacted by the effects of cantori or the Arnold web. Viewed over somewhat longer times, chaotic ensembles typical converge exponentially towards an invariant or near-invariant equilibrium. This, however, need not correspond to a true equilibrium, which may only be approached over very long time scales. Time-dependent perturbations can dramatically increase the efficiency of phase mixing, both by accelerating the approach towards a near-equilibrium and by facilitating diffusion through cantori or along the Arnold web so as to accelerate the approach towards a true equilibrium. The efficacy of such perturbations typically scales logarithmically in amplitude, but is comparatively insensitive to most other details, a conclusion which reinforces the interpretation that the perturbations act via a resonant coupling.  相似文献   

18.
Available velocity dispersion estimates for the old stellar population of galactic disks at galactocentric distances r?2L (where L is the photometric radial scale length of the disk) are used to determine the threshold local surface density of disks that are stable against gravitational perturbations. The mass of the disk Md calculated under the assumption of its marginal stability is compared with the total mass Mt and luminosity L B of the galaxy within r=4L. We corroborate the conclusion that a substantial fraction of the mass in galaxies is probably located in their dark halos. The ratio of the radial velocity dispersion to the circular velocity increases along the sequence of galactic color indices and decreases from the early to late morphological types. For most of the galaxies with large color indices (B–V)0>0.75, which mainly belong to the S0 type, the velocity dispersion exceeds significantly the threshold value required for the disk to be stable. The reverse situation is true for spiral galaxies: the ratios Md/LB for these agree well with those expected for evolving stellar systems with the observed color indices. This suggests that the disks of spiral galaxies underwent no significant dynamical heating after they reached a quasi-equilibrium stable state.  相似文献   

19.
Stability of the planar full 2-body problem   总被引:1,自引:0,他引:1  
The stability of the Full Two-Body Problem is studied in the case where both bodies are non-spherical, but are restricted to planar motion. The mutual potential is expanded up to second order in the mass moments, yielding a highly symmetric yet non-trivial dynamical system. For this system we identify all relative equilibria and determine their stability properties, with an emphasis on finding the energetically stable relative equilibria and conditions for Hill stability of the system. The energetically stable relative equilibria always correspond to the classical “gravity gradient” configuration with the long ends of the two bodies pointed at each other, however there always exists a second equilibrium in this configuration at a closer separation that is unstable. For our model system we precisely map out the relations between these different configurations at a given value of angular momentum. This analysis identifies the fundamental physical constraints and limitations that exist on such systems, and has immediate applications to the stability of asteroid systems that are fissioned due to a rapid spin rate. Specifically, we find that all contact binary asteroids which are spun to fission will initially lie in an unstable dynamical state and can always re-impact. If the total system energy is positive, the fissioned system can disrupt directly from this relative equilibrium, while if it is negative the system is bound together.  相似文献   

20.
We study the dynamics of the de Sitter resonance, namely the stable equilibrium configuration of the first three Galilean satellites. We clarify the relation between this family of configurations and the more general Laplace resonant states. In order to describe the dynamics around the de Sitter stable equilibrium, a one-degree-of-freedom Hamiltonian normal form is constructed and exploited to identify initial conditions leading to the two families. The normal form Hamiltonian is used to check the accuracy in the location of the equilibrium positions. Besides, it gives a measure of how sensitive it is with respect to the different perturbations acting on the system. By looking at the phase plane of the normal form, we can identify a Laplace-like configuration, which highlights many substantial aspects of the observed one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号