首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
表生环境中镁同位素的地球化学循环   总被引:2,自引:0,他引:2  
近些年表生环境中镁同位素分馏取得了一系列重要研究进展,这些新认识为深入理解表生环境中镁同位素地球化学循环奠定了基础。表生环境中镁同位素的地球化学循环主要涉及风化、河流搬运、碳酸盐沉淀、水岩反应等重要地质过程。风化过程中镁同位素发生显著分馏,硅酸盐风化产物中富集重的镁同位素,轻的镁同位素易进入水体。河流搬运过程中,镁同位素不发生分馏,但外源输入可能影响水体的镁同位素组成。河水汇入海洋后,碳酸盐沉淀过程可导致轻的镁同位素以碳酸盐的形式从海水中移出。在海底高温水岩反应过程中,海水中绝大多数的镁(80%~87%)都进入岩石,循环后的热液可能富集轻的镁同位素。海底低温水岩反应过程中海水的镁可以进入岩石并形成次生矿物,此过程的镁同位素分馏主要与次生矿物的形成有关。此外,海水中的镁易与黏土矿物发生交换反应,此过程黏土矿物倾向于吸附轻的镁同位素。总之,在表生环境中上地壳的镁(δ26Mg约为-0.22‰)经历风化作用、河流搬运、海洋贮存,最终以碳酸盐岩(δ26Mg一般小于-1‰)或与玄武岩发生反应的形式重新回到岩石圈。  相似文献   

2.
唐波  王景腾  付勇 《岩矿测试》2020,39(2):162-173
镁同位素在低温地球化学过程中显著的分馏效应,是其示踪地球表生环境演化及物质循环的基础。本文在前人研究的基础上,对地球上不同地质储库中的镁同位素组成及碳酸盐矿物形成过程中的镁同位素分馏控制因素进行了总结:火成岩的镁同位素组成较均一;风化产物总体富集重的镁同位素,且变化较大;碳酸盐岩中灰岩相对白云岩富集轻的镁同位素,但总体上富集轻的镁同位素;岩石类型、风化强度以及植被等因素对河流地表水的镁同位素组成影响较大,导致地表水的镁同位素组成总体变化较大;海水的镁同位素组成均一,平均值约为-0.83‰;低温条件下,控制碳酸盐矿物无机成因过程中镁同位素分馏的因素有矿物相、沉淀速率和温度,其中矿物相是主要控制因素;生物成因碳酸盐矿物镁同位素组成与生物体对含镁碳酸盐矿物的利用形式有关,除了需考虑与无机碳酸盐沉淀类似的控制因素外,还需考虑不同物种对轻、重镁同位素的选择性吸收能力;因生物成因海相碳酸盐矿物几乎都是由最初的无定形相碳酸盐转变而来,故生物成因海相碳酸盐矿物的镁同位素特征不能代表生成无定形相碳酸盐的流体的镁同位素特征。镁同位素在低温条件下具有良好的分馏效应,随着分析测试技术的发展及不同地质储库中镁同位素组成数据的积累和完善,有关表生环境中镁同位素分馏机制的许多问题将逐步得到解决,镁同位素在揭示地球表生环境演化及物质循环方面将发挥更大的作用。  相似文献   

3.
The new non-traditional stable strontium (Sr) isotope has aroused great attention from academic scholars in terms of the continental weathering and marine Sr cycle. The analytical precision of stable Sr isotope using mass spectrometry is better than 0.03‰. The compiled δ88/ 86Sr values vary from -3.65‰ to 1.68‰ in natural reservoirs. Recent findings indicate that multiple processes can cause stable Sr isotope fractionation in Earth surface, including the incongruent dissolution of primary minerals, the formation and adsorption of secondary minerals, the precipitation of calcium carbonate, and the biological cycling. These processes lead to higher δ88/ 86Sr in the liquid phase and lower δ88/ 86Sr in the solid phase, and thus result in different geochemical behavior of stable Sr isotopes in water and sediment during the weathering processes. The δ88/ 86Sr values of river sediment decrease with the increase of weathering intensity, which has the potential to indicate chemical weathering intensity. Meanwhile, further study on the fractionation mechanisms and constraints of stable Sr isotopes in river water plays an important role in tracing chemical weathering processes within the watershed, which will lead to a better understanding of the global ocean Sr cycle.  相似文献   

4.
夏攀  甯濛  文华国  郎咸国 《沉积学报》2021,39(6):1546-1564
镁(Mg)作为主要的造岩元素及生物营养元素,是连接大陆、海洋和地球内部循环的重要纽带。碳酸盐岩作为Mg的主要储库,是全球Mg循环的重要组成环节,利用Mg同位素示踪碳酸盐岩沉积—成岩过程是有效反演深时海水Mg同位素组成(δ26Mg海水)、恢复全球Mg循环的基本前提。近二十年来,Mg同位素在示踪碳酸盐岩沉积—成岩过程研究中取得了较大进展:1)不同类型碳酸盐矿物形成过程中的Mg同位素分馏及其影响因素的研究得到完善;2)建立了Mg同位素地球化学模型,对不同白云石化过程进行半定量—定量模拟;3)初步探索了利用Mg同位素反演早期成岩流体体系的方法。以上研究进展为利用碳酸盐岩恢复δ26Mg海水奠定了理论基础,在选择有效的碳酸盐岩载体恢复δ26Mg海水时,需充分考虑碳酸盐岩的沉积—成岩过程及其对Mg同位素组成的影响,并适当结合地球化学模型,消除沉积—成岩因素的影响,进而恢复δ26Mg海水。  相似文献   

5.
硼是一种中等挥发性元素,具有11B和10B两个稳定同位素。两个同位素间高达10%的相对质量差使其在地质过程中引起高达-70‰至+75‰的硼同位素变化。硼在自然界主要与氧键合形成三配位(BO3)和四配位(BO4)结构,因而11B和10B间同位素分馏主要受控于三配体(BO3)和四面体(BO4)间配分。本文综述了低温和高温地质过程的硼同位素分馏的理论和实验研究进展。在溶液中B(OH)3和${B(OH)^{-}_{4}}$间硼同位素分馏受pH和热力学p-T条件控制,实验和理论表征获得常温常压条件下的B(OH)3和$B(OH)^{-}_{4}$间同位素分馏系数(α3-4)变化范围为1.019 4至1.033 3。低温条件下矿物(如碳酸盐、黏土矿物(蒙脱石和伊利石)、针铁矿、水锰矿、硼酸盐)与溶液间硼同位素分馏行为除了受p-T-pH影响外,矿物表面吸附引起的分馏效应十分显著。在中高温过程(蒙脱石伊利石化、富硼电气石和白云母矿物与热液流体,以及硅酸盐熔体与流体)中硼同位素分馏行为受到硼配位构型、化学成分以及物理化学条件的控制。随着硼同位素分馏机理研究的深入以及越来越完善的地质储库硼同位素端员特征表征,硼同位素地球化学指标可以灵敏示踪成矿物质来源、探究成矿作用与成因模式和重建成矿过程物理化学条件。目前矿床硼同位素地球化学研究的难点在于实现不同赋存相(如流体、矿物和熔体)中硼配位键合结构和硼同位素组成的精细化表征。  相似文献   

6.
This study presents lithium (Li) and magnesium (Mg) isotope data from experiments designed to assess the effects of dissolution of primary phases and the formation of secondary minerals during the weathering of basalt. Basalt glass and olivine dissolution experiments were performed in mixed through-flow reactors under controlled equilibrium conditions, at low pH (2-4) in order to keep solutions undersaturated (i.e. far-from equilibrium) and inhibit the formation of secondary minerals. Combined dissolution-precipitation experiments were performed at high pH (10 and 11) increasing the saturation state of the solutions (moving the system closer to equilibrium) and thereby promoting the formation of secondary minerals.At conditions far from equilibrium saturation state modelling and solution stoichiometry suggest that little secondary mineral formation has occurred. This is supported by the similarity of the dissolution rates of basalt glass and olivine obtained here compared to those of previous experiments. The δ7Li isotope composition of the experimental solution is indistinguishable from that of the initial basalt glass or olivine indicating that little fractionation has occurred. In contrast, the same experimental solutions have light Mg isotope compositions relative to the primary phases, and the solution becomes progressively lighter with time. In the absence of any evidence for secondary mineral formation the most likely explanation for these light Mg isotope compositions is that there has been preferential loss of light Mg during primary phase dissolution.For the experiments undertaken at close to equilibrium conditions the results of saturation state modelling and changes in solution chemistry suggest that secondary mineral formation has occurred. X-ray diffraction (XRD) measurements of the reacted mineral products from these experiments confirm that the principal secondary phase that has formed is chrysotile. Lithium isotope ratios of the experimental fluid become increasingly heavy with time, consistent with previous experimental work and natural data indicating that 6Li is preferentially incorporated into secondary minerals, leaving the solution enriched in 7Li. The behaviour of Mg isotopes is different from that anticipated or observed in natural systems. Similar to the far from equilibrium experiments initially light Mg is lost during olivine dissolution, but with time the δ26Mg value of the solution becomes increasingly heavy. This suggests either preferential loss of light, and then heavy Mg from olivine, or that the secondary phase preferentially incorporates light Mg from solution. Assuming that the secondary phase is chrysotile, a Mg-silicate, the sense of Mg fractionation is opposite to that previously associated with silicate soils and implies that the fractionation of Mg isotopes during silicate precipitation may be mineral specific. If secondary silicates do preferentially remove light Mg from solution then this could be a possible mechanism for the relatively heavy δ26Mg value of seawater. This study highlights the utility of experimental studies to quantify the effects of natural weathering reactions on the Li and Mg geochemical cycles.  相似文献   

7.
Sr isotope and Ca/Mg/Sr chemical compositions of freshwater ostracode tests separated from a sediment core represent the last 16 ka of sedimentation in Lake Constance, Central Europe. The chemical evolution of the paleowater's dissolved load of Lake Constance was estimated by correcting the ostracode data for Ca/Mg/Sr fractionation due to biogenic calcification. Since the Late Pleistocene deglaciation, the Ca/Sr molar ratios of paleowaters increased systematically from about 100 (a near marine signature) to about 200. Ca/Mg molar ratios varied in the range of 1–25. The 87Sr/86Sr ratios indicate Late Pleistocene paleowater compositions of 0.7086–0.7091, significantly more radiogenic than present day waters (0.7085). Sr isotopes and Ca/Mg/Sr chemical data together show that weathering of Mesozoic evaporites consistently dominated the dissolved Sr load (80–90%). Carbonate and silicate weathering were less important (1–10%). Trends of Sr dissolved loads were therefore not related to Mg which was mainly mobilized by carbonate weathering. Biotite weathering was an important source of radiogenic Sr in the paleowaters. The short-term release (duration about 600–800 years) of radiogenic Sr during glacier retreat started 15.2 ka ago and was due to enhanced biotite weathering at the glacier base. Long-term release of radiogenic Sr was due to biotite weathering in glacial soils and silicate rocks, and has gradually declined since the Late Pleistocene/Holocene transition.  相似文献   

8.
高温下非传统稳定同位素分馏   总被引:5,自引:1,他引:4  
黄方 《岩石学报》2011,27(2):365-382
过去十几年来,非传统稳定同位素地球化学在高温地质过程的研究中取得了的重大进展。多接收诱导耦合等离子质谱(MC-ICP-MS)的应用引发了稳定同位素分析方法的重大突破,使得精确测定重元素的同位素比值成为可能。本文总结了以Li、Fe和Mg同位素为代表的非传统稳定同位素在岩石地球化学研究中的应用。Li同位素目前被广泛地用于地幔地球化学、俯冲带物质再循环和变质作用的研究中,可以用来示踪岩浆的源区性质和扩散等动力学过程。不同价态的Fe在矿物熔体相之间的分配可以产生Fe同位素分馏,可以发生在地幔交代、部分熔融、分离结晶等过程中。岩浆岩的Mg同位素则大致反映其源区的特征,地幔的Mg同位素组成比较均一,这为研究低温地球化学过程中Mg同位素的分馏提供一个均一的背景。此外,Cl,Si,Cu,Ca,U等等同位素体系也具有广阔的应用前景。对同位素分馏机制的实验研究和理论模拟为理解非传统稳定同位素数据提供了必要的指导。实验表明,高温下具有不同的迁移速度的轻、重同位素可以产生显著的动力学同位素分馏,这一分馏可以在化学扩散、蒸发和凝华等过程中发生;同位素在矿物和熔体以及流体相中化学环境的差异使得不同相之间可以发生平衡分馏。而最近的硅酸盐岩浆的热扩散和热迁移实验则揭示了一种"新"的岩浆分异和同位素分馏机制。沿着温度梯度,硅酸盐岩浆可以发生显著的元素和同位素分异,湿的安山岩可以通过这种方式演变成花岗质成分,因此这个过程可能对陆壳的产生和演化有重大影响。如果温度梯度在岩浆作用中能长期存在,热扩散就可以产生稳定同位素的分馏,这一机制有别于传统的平衡和动力学同位素分馏。 而多个稳定同位素体系的正相关关系是示踪热迁移过程的最有力证据。在热扩散过程中,流体承载的物质的浓度和它的索瑞系数有关。但是这个系数对体系的很多参数非常敏感,变化极大,因此对热扩散效应的研究产生极大的困难。对热扩散实验的镁、钙和铁同位素测量表明,同位素比值的变化与体系的化学组成以及总温度无关,只和温度变化的幅度有关,这意味着即使元素的索瑞系数变化多端,某一元素的同位素之间的索瑞系数的差别总为常数。这一发现有助于简化对热扩散和索瑞系数这一基础物理问题的研究 。  相似文献   

9.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

10.
陈洁  龚迎莉  陈露  向蜜  田世洪 《地球科学》2021,46(12):4366-4389
镁(Mg)同位素有3个,24Mg、25Mg和26Mg,其中24Mg和26Mg的相对质量差较大,高达8.33%,这种大的相对质量差使地壳活动或其他地质过程中Mg同位素因化学物理条件的变化而发生明显的同位素质量分馏.目前,自然界可观测到的δ26Mg变化范围为-5.60‰~0.92‰,约6.5‰.镁在低温地球化学过程中分馏显著,而在高温环境下分馏不明显,因而Mg同位素是地质过程的潜在地球化学指标和示踪剂,在低温风化作用、高温部分熔融与岩浆结晶分异、变质作用、板片俯冲及壳幔物质循环、热液蚀变和矿床成因等方面取得重要进展.为此,简要介绍了镁同位素分析方法,系统总结了Mg同位素在地球各储库中的组成与分布特征以及地质作用过程中的镁同位素分馏机理;其次重点介绍了镁同位素近年来在碳酸岩研究中的应用;最后对有关问题进行了探讨,包括幔源岩石低δ26Mg成因解释(与俯冲再循环的碳酸盐岩、洋壳物质有关或与矿物分离结晶有关)和Li-Mg-Ca同位素联合示踪岩浆碳酸岩岩石成因.并对碰撞反应池多接收器电感耦合等离子体质谱仪(Nu Sapphire MC-ICP-MS)分析优势和Li-Mg-Ca等金属同位素联合示踪在稀土元素富集机制的应用进行了展望.   相似文献   

11.
Eclogite formation on the island of Holsnøy required the addition of water to anhydrous granulite-facies protoliths. In order to assess this process, oxygen and carbon isotope ratios of whole rock powders and mineral separates from eclogites and granulites have been measured. Whole rock oxygen isotope ratios range from 7.3 to 6.0%. SMOW in granulites (average = 6.38%.) and 7.2 to 6.1%. in eclogites (average = 6.55%.). Field relations permit identification of the granulite protolith of eclogites. Oxygen isotope measurements show shifts of up to 0.5%. between some eclogites compared to their corresponding granulite protoliths, indicating open system and locally heterogeneous fluid behavior. Mineral pair fractionations in the eclogites show disequilibrium, are incompatible with slow cooling and diffusive exchange between phases, and suggest that open system fluid movement continued after eclogite-facies metamorphism. Carbonate is also present in some of the eclogites as a primary mineral (dolomite) and as part of a retrograde assemblage (calcite). Textural evidence suggests that carbonate formation occurred during and after eclogite formation, however all measured carbonate is out of isotopic equilibrium with eclogite facies minerals, due to the influx of retrograde fluids. Massive calcite marble pods, containing amphibolite facies cale-silicate minerals, have average δ18O of 9.5 ± 0.6%., while calcite in retrograded eclogites has δ18O 17.7 ± 2.7%., The δ13C (≈ −4 ± 0.8%.) is indistinguishable between these two groups.

Both whole rock and carbonate stable isotope data are interpreted as indicating a continued history of fluid infiltration during and after peak eclogite facies metamorphism. The most probable source of fluids are from dewatered sediments tectonically juxtaposed during the Caledonian orogeny.  相似文献   


12.
苏皖玄武岩土壤中风尘的识别及风化特征   总被引:1,自引:0,他引:1  
风尘传输与沉降影响生态系统和元素的生物地球化学循环,对其在成壤作用中的识别与贡献进行研究有重要意义。文章选择在非风尘沉降区的苏皖玄武岩台地典型的两个风化剖面(安徽明光梅花村和江苏盱眙宝塔村)和部分表土及水系沉积物样品,系统分析主要矿物、粘土矿物、常量元素、微量元素及Sr、Nd同位素组成。结果显示,玄武岩基岩基本由斜长石和辉石组成,而风化基岩则主要由蒙脱石构成,风化土壤则出现基岩和风化基岩中未出现的石英、伊利石等风尘特征矿物;基岩和风化基岩以高Mg,低Si、K,无Eu异常等特征,风化土壤则以高Si、K,低Mg,负Eu异常等特征;基岩和风化基岩的εNd偏正,86Sr/87Sr值较低,而风化土壤εNd偏负,86Sr/87Sr值较高;各种证据都显示风尘对风化土壤有重要贡献,通过Nd同位素混合模式计算,风尘对土壤的贡献达60%以上。玄武岩风化表现为完全的蒙脱石化,为显著的去Ca、Mg作用,在梅花村剖面,表层土壤出现Ce负异常,而在下部层位出现Ce正异常,研究还发现在风尘的加积作用,土壤的Si、K含量得以上升。受相对较大的玄武岩台地高程差影响,玄武岩风化产物和沉降的风尘易被降水侵蚀,造成风化剖面较薄,促使玄武岩风化处于“供应限制”模式。本次工作为玄武岩的风化机制,风尘在元素地球化学循环中的作用等提供了新的地质证据。  相似文献   

13.
苏本勋  肖燕  陈晨  白洋  刘霞  梁子  彭青山 《地球科学》2018,43(4):1011-1024
蛇绿岩中铬铁矿床成因一直存在较大争议,其主要原因可归结为:寄主蛇绿岩存在成因争议、产出状态不清、矿石及围岩矿物组合单一以及主要矿物成分简单但矿物包裹体复杂多样.针对这些研究瓶颈,率先对西藏普兰和罗布莎、土耳其K?z?lda?和Kop蛇绿岩中的地幔橄榄岩和铬铁岩进行了全岩和单矿物Fe-Mg同位素的探索性研究工作.结果表明:(1)蛇绿岩中的地幔橄榄岩具有较均一的Fe-Mg同位素组成,与世界上其他地区的地幔橄榄岩相似;(2)铬铁岩中铬铁矿和橄榄石之间存在明显的Fe-Mg同位素分馏,铬铁矿多具有比共存橄榄石轻的Fe同位素组成,与地幔橄榄岩中的尖晶石和橄榄石相反,Mg同位素变化较大;(3)铬铁矿和橄榄石的Fe-Mg同位素主要受控于结晶分异和Fe-Mg交换,且这两个过程造成的同位素变化趋势明显不同.因此,Fe-Mg同位素在揭示铬铁矿母岩浆来源、性质及成矿过程方面具有较大的应用潜力.   相似文献   

14.
This paper determines the weathering and atmospheric contributions of Ca in surface water from a small spruce forested silicate catchment (N–E France) receiving acid atmospheric inputs. The bedrock is a granite with K-feldspar and albite as dominant phases. The calcium content in plagioclase is low and the Ca/Na ratio in surface water is high, reflecting other sources of calcium from those expected from the weathering of major mineral phases. The biotite content is low. Only traces of apatite were detected while no calcite was found in spite of a major hydrothermal event having affected the granite. The strontium isotopic ratio 87Sr/86Sr and Sr content was used as a tracer of weathering and was determined in minerals and bulk bedrock, open field precipitation, throughfall, soil solution, spring and stream water. The Sr isotopic ratio of the reacting weathering end-member was predicted by simulating the alteration of the granite minerals by incorporating strontium into the water–rock interaction kinetic code KINDIS. In the early stages of water–rock interaction, K-feldspar and biotite strongly influence the isotopic composition of the weathering solution whereas, the Na-rich plagioclase appears to be the main long-term reactive weathering end-member. Approximately 50% of dissolved Sr in streamwater are atmospherically derived. The 87Sr/86Sr ratios of exchangeable Sr in the fine fraction at 1-m depth from a soil profile indicate that the amount of exchangeable Sr seems essentially controlled by atmospheric inputs. The exception is the deep saprolite where weathering processes could supply the Sr (and Ca). Na-Plagioclase weathering obviously control the chemistry and the isotopic composition of surface waters. The weathering of trace mineral plays a secondary role, the exception is for apatite when plagioclase is absent. Our hydrochemical, mineralogical and isotopic investigations show that a major part of the strong Ca losses detected in catchment hydrochemical budgets that result from the neutralization of acid precipitation has an atmospheric origin. Consequently, in the long term, in such areas, the availability of such an exchangeable base cation might be strongly limited and surface waters consequently acidified.  相似文献   

15.
团簇同位素指的是含有2个及2个以上的重同位素结合在一起形成的同位素体。团簇同位素的数值定义为同位素体的相对丰度偏离随机分布状态的程度。测量该相对丰度较低的同位素体需要高精度的质谱仪,难点在于利用同位素组成已知的参考气体和不同同位素组成的加热气体,以获得绝对参考体系下的数值。团簇同位素体的相对丰度非常低,但是具有非常独特的物理和化学性质。比如碳酸盐矿物中13C18O16O的丰度对温度具有敏感性,而与矿物的全岩同位素以及矿物形成时期的流体性质无关,因此可以利用测量的碳酸盐团簇同位素来获得矿物的生长温度,再利用矿物的氧同位素(δ18O),根据传统的氧同位素温度计原理,可以进一步获得矿物的生长流体(水)的氧同位素。目前,团簇同位素温度计已经在古气候(温度)重建、古高度恢复、碳酸盐岩的成岩作用以及甲烷的成因分析等方面得到了广泛应用。评估深埋高温过程引起的C-O化学键重置对碳酸盐团簇同位素的影响、测试仪器产生对团簇同位素的非线性误差校正、以及其他丰度更低的团簇同位素体或大分子的团簇同位素的测量,是下一步的研究方向。  相似文献   

16.
长江流域面积巨大,岩性多变,加之三峡大坝等重大水利工程的影响,干流河水的水化学成因存在较大争议。此外,以往研究中流域矿物风化过程的碳汇通量估算一般基于阳离子来源分析,但该算法通常涉及多种矿物端元的参数选取,结果具有不确定性。本次研究对长江干流水化学的时空演变进行了整体分析,并基于上游河水样品HCO3~-含量的校正与计算,提出了一种计算矿物风化过程碳汇通量的新方法。研究结果表明,蒸发盐溶解、循环盐作用、矿物风化及硫酸盐溶解是控制长江干流河水离子组成的主要水文地球化学作用,而人类活动主要影响了离海距离3 000 km以内河水NO3~-含量;长江上游干流硅酸盐风化消耗CO2速率为1.16×10~5 mol/(km~2·a),碳酸盐风化消耗CO2速率为4.75×10~5 mol/(km~2·a)。本研究有助于加深对长江干流主要水文地球化学作用的认识,丰富和完善碳循环研究理论。  相似文献   

17.
Magnesium and strontium isotope signatures were determined during different seasons for the main rivers of the Moselle basin, northeastern France. This small basin is remarkable for its well-constrained and varied lithology on a small distance scale, and this is reflected in river water Sr isotope compositions. Upstream, where the Moselle River drains silicate rocks of the Vosges mountains, waters are characterized by relatively high 87Sr/86Sr ratios (0.7128-0.7174). In contrast, downstream of the city of Epinal where the Moselle River flows through carbonates and evaporites of the Lorraine plateau, 87Sr/86Sr ratios are lower, down to 0.70824.Magnesium in river waters draining silicates is systematically depleted in heavy isotopes (δ26Mg values range from −1.2 to −0.7‰) relative to the value presently estimated for the continental crust and a local diorite (−0.5‰). In comparison, δ26Mg values measured in soil samples are higher (∼0.0‰). This suggests that Mg isotope fractionation occurs during mineral leaching and/or formation of secondary clay minerals. On the Lorraine plateau, tributaries draining marls, carbonates and evaporites are characterized by low Ca/Mg (1.5-3.2) and low Ca/Sr (80-400) when compared to local carbonate rocks (Ca/Mg = 29-59; Ca/Sr = 370-2200), similar to other rivers draining carbonates. The most likely cause of the Mg and Sr excesses in these rivers is early thermodynamic saturation of groundwater with calcite relative to magnesite and strontianite as groundwater chemistry progressively evolves in the aquifer. δ26Mg of the dissolved phases of tributaries draining mainly carbonates and evaporites are relatively low and constant throughout the year (from −1.4‰ to −1.6‰ and from −1.2‰ to −1.4‰, respectively), within the range defined for the underlying rocks. Downstream of Epinal, the compositions of the Moselle River samples in a δ26Mg vs. 87Sr/86Sr diagram can be explained by mixing curves between silicate, carbonate and evaporite waters, with a significant contribution from the Vosgian silicate lithologies (>70%). Temporal co-variation between δ26Mg and 87Sr/86Sr for the Moselle River throughout year is also observed, and is consistent with a higher contribution from the Vosges mountains in winter, in terms of runoff and dissolved element flux. Overall, this study shows that Mg isotopes measured in waters, rocks and soils, coupled with other tracers such as Sr isotopes, could be used to better constrain riverine Mg sources, particularly if analytical uncertainties in Mg isotope measurements can be improved in order to perform more precise quantifications.  相似文献   

18.
南伊沟是林芝地区重要水源涵养区,研究南伊沟水体水化学和氢氧同位素特征,揭示“三水转化”规律,对提高林芝地区水体水文地球化学研究程度,支撑当地林水关系研究,服务高原地区水生态保护具有重要意义。运用水化学和氢氧同位素分析方法,分析了地区水化学特征、水岩作用情况和水循环特征。结果表明: 南伊沟水体为极低矿化度淡水,地表水水化学类型为HCO3-Ca·Mg型和SO4·HCO3-Ca·Mg型,地下水水化学类型为HCO3-Ca·Na型; 地表水和地下水的水化学离子成分主要受岩石风化控制,离子来源主要受碳酸盐岩溶解和硅酸盐岩风化影响,地表水中Na+、K+、Cl-主要来源于盐岩溶解,同时还受降雨影响,地表水和地下水中Ca2+、Mg2+主要来源于碳酸盐岩矿物溶解; 地下水和地表水水岩作用较弱,对比上游雅鲁藏布江和拉萨河地表水,大部分δ18O、δD值具有明显的高度效应和大陆效应; 南伊沟枯水年内强烈的不平衡蒸发作用是导致地区大气降雨线斜率和截距偏小的主要原因之一。  相似文献   

19.
Mg isotope ratios (26Mg/24Mg) are reported in soil pore-fluids, rain and seawater, grass and smectite from a 90 kyr old soil, developed on an uplifted marine terrace from Santa Cruz, California. Rain water has an invariant 26Mg/24Mg ratio (expressed as δ26Mg) at −0.79 ± 0.05‰, identical to seawater δ26Mg. Detrital smectite (from the base of the soil profile, and therefore unweathered) has a δ26Mg value of 0.11‰, potentially enriched in 26Mg by up to 0.3‰ compared to the bulk silicate Earth Mg isotope composition (although within the range of all terrestrial silicates). The soil pore-waters show a continuous profile with depth for δ26Mg, ranging from −0.99‰ near the surface to −0.43‰ at the base of the profile. Shallow pore-waters (<1 m) have δ26Mg values that are similar to, or slightly lower than the rain waters. This implies that the degree of biological cycling of Mg in the pore-waters is relatively small and is quantified as <32%, calculated using the average Mg isotope enrichment factor between grass and rain (δ26Mggrass-δ26Mgrain) of 0.21‰. The deep pore-waters (1-15 m deep) have δ26Mg values that are intermediate between the smectite and rain, ranging from −0.76‰ to −0.43‰, and show a similar trend with depth compared to Sr isotope ratios. The similarity between Sr and Mg isotope ratios confirms that the Mg in the pore-waters can be explained by a mixture between rain and smectite derived Mg, despite the fact that Mg and Sr concentrations may be buffered by the exchangeable reservoir. However, whilst Sr isotope ratios in the pore-waters span almost the complete range between mineral and rain inputs, Mg isotopes compositions are much closer to the rain inputs. If Mg and Sr isotope ratios are controlled uniquely by a mixture, the data can be used to estimate the mineral weathering inputs to the pore-waters, by correcting for the rain inputs. This isotopic correction is compared to the commonly used chloride correction for precipitation inputs. A consistent interpretation is only possible if Mg isotope ratios are fractionated either by the precipitation of a secondary Mg bearing phase, not detected by conventional methods, or selective leaching of 24Mg from smectite. There is therefore dual control on the Mg isotopic composition of the pore-waters, mixing of two inputs with distinct isotopic compositions, modified by fractionation. The data provide (1) further evidence for Mg isotope fractionation at the surface of the Earth and (2) the first field evidence of Mg isotope fractionation during uptake by natural plants. The coherent behaviour of Mg isotope ratios in soil environments is encouraging for the development of Mg isotope ratios as a quantitative tracer of both weathering inputs of Mg to waters, and the physicochemical processes that cycle Mg, a major cation linked to the carbon cycle, during continental weathering.  相似文献   

20.
Large seasonal variations in the dissolved load of the headwater tributaries of the Marsyandi river (Nepal Himalaya) for major cations and 87Sr/86Sr ratios are interpreted to result from a greater dissolution of carbonate relative to silicate at high runoff. There is up to a 0.003 decrease in strontium isotope ratios and a factor of 3 reduction in the Si(OH)4/Ca ratio during the monsoon. These variations, in small rivers sampling uniform lithologies, result from a different response of carbonate and silicate mineral dissolution to climatic forcing. Similar trends are observed in compiled literature data, from both Indian and Nepalese Himalayan rivers. Carbonate weathering is more sensitive to monsoonal runoff because of its faster dissolution kinetics. Silicate weathering increases relative to carbonate during the dry season, and may be more predominant in groundwater with longer water-rock interaction times. Despite this kinetic effect, silicate weathering fluxes are dominated by the monsoon flux, when between 50% and 70% of total annual silicate weathering flux occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号