首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
珠江口磨刀门枯季水文特征及河口动力过程   总被引:15,自引:0,他引:15       下载免费PDF全文
根据磨刀门2003年12月9~15日的大、中潮同步水文观测资料,分析了磨刀门枯季的潮汐、潮流、余流、悬移质含沙量、盐度等水文特征,并对枯季河口动力过程,如咸淡水混合、河口射流等进行了初步研究。在枯季由于径流较弱,潮流成为主要动力。表层由于受径流和风的影响余流基本上沿河道走向向下游,中层以下有稳定的向上的余流存在。枯季磨刀门含沙量较小(<1 kg/m3),盐度在平面上和垂向上均有一定变化。磨刀门枯季咸淡水混合类型为缓混合型,各站盐度分层参数均在0.01~1.0。从实测流速的分布情况来看,河口下层有反向的水流,存在明显的因密度差而形成的密度环流。根据枯季实测资料计算所得的密度弗劳德数,磨刀门枯季以浮力射流为主。  相似文献   

2.
海南岛南渡江河口动力沉积模式   总被引:1,自引:0,他引:1  
河口是一个迅速变化的、动态的海岸巨系统。作为陆地河流和和海洋过程的重要链接,河口的动力沉积过程一直是陆海相互作用研究的核心和焦点内容。本文基于2011年8月在南渡江河口采集的大范围表层沉积物样品,利用经验正交函数分析技术(EOF)对河口的动力沉积特征进行研究。结果表明:南渡江河口海床表层沉积物主要以砂为主,沉积物总体偏粗;河口的动力沉积特征自陆向海可分为三种动力沉积模式:①波控模式,该模式主要分布在河口地区10 m以浅的近岸区域,呈与岸线平行的带状分布,其表层沉积物以粉砂质砂为主,分选较差;②径、潮流耦合作用下的沉积模式,在径流和潮流的共同控制作用下,沉积物主要表现为粒径较粗,该模式呈扇形分布,其中20 m以浅河口海床受控于径流和潮流的共同作用,20 m以深海床表现为潮流控制的沉积模式;③台风或风暴潮控制的沉积模式,即整个河口海床都表现出受控于台风或者风暴潮作用的沉积特征,沉积物主要是以粗砂为主。常态作用下,河口以径、潮流控制的沉积模式为主,波浪、径流和潮流以及潮流控制的沉积模式自陆向海的规律性分布体现出南渡江河口近岸以波浪作用为主,而离岸则受河口尤其是洪水作用形成的喷射流以及沿岸潮流的影响。此外,尽管南渡江河口在过去的成果中将其归纳为波控河口,但目前的研究发现:该河口区域沉积类型变化明显受控于不同的动力作用,河口形态以及琼州海峡的障蔽和“狭管效应”为河口沉积环境变化的主要控制因素。  相似文献   

3.
磨刀门河口环流与咸淡水混合层化机制   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究磨刀门盐水混合层化特征,基于SCHISM模型,建立了三维盐度数值模型,根据实测资料对其进行验证。结合水体势能异常理论,对枯季磨刀门河口混合层化的时空变化特征及深槽与浅滩的层化机制差异进行分析。结果表明:磨刀门河口小潮时水体层化最强,中潮时水体层化最弱,且拦门沙至挂定角段水体层化始终较强。磨刀门深槽水体层化主要受纵向平流、纵向水深平均应变和垂向混合影响,而浅滩水体层化则受横向平流、横向水深平均应变和垂向混合影响;磨刀门河口表、底层水体湍动能耗散率较高,而中间水层存在低耗散区,且涨潮时湍动能耗散率比落潮时大。  相似文献   

4.
波流共存场中多向随机波浪传播变形数学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
基于波作用量守恒方程建立了波流共存场中多向随机波浪传播变形数学模型,模型中考虑了波浪绕射的影响和水流引起的波浪弥散多普勒效应,应用包含水流和地形影响的激破波模式计算波浪破碎的能量耗散,采用一阶上迎风有限差分格式离散控制方程。分别计算了有无近岸流情况下单向和多向随机波浪的波高分布,考虑水流影响的数值计算结果与物理模型实验数据吻合良好,比较分析表明,所建立的数学模型能够复演由于离岸流引起的波高增大,可用于波流共存场多向随机波浪传播变形的模拟和预报。  相似文献   

5.
径潮动力对长江河口滞流点的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究三峡蓄水后滞流点的时空变化规律,应用ECOMSED模型模拟长江河口在不同径流、潮流作用下的水流动态过程。结果表明:北支大洪水期下移幅度大,涨潮动力强劲,随潮流变化大;南侧变化幅度整体较北支小,随径流的变化幅度自大至小依次为北港、南槽、北槽;随潮流的变化幅度自大至小依次为南槽、北港、北槽。滞流点随径、潮条件变化时,受地形影响明显,三峡蓄水后,径流变化范围缩小,引起不同地貌单元滞流点范围不同程度的缩小,可据此认为,与滞流点位置一致的最大浑浊带范围呈现减小的趋势,由此可能引起最大浑浊带和地貌调整。  相似文献   

6.
长江口水流挟沙力公式初步研究   总被引:1,自引:0,他引:1  
邢云  宋志尧  孔俊  章卫胜 《水文》2008,28(1):64-66
本文根据泥沙运动理论和水流能量平衡原理,结合水流对泥沙的作用效果并分析了现有水流挟沙力公式的适用条件,通过实测资料的整理和研究,推导得出长江口水流挟沙力公式.结果表明,河口半潮平均挟沙力应考虑水流对悬移质的输送和对床沙中悬移质的上浮,同时还应考虑河口其它动力因素(如风、波浪等)及其各类动力过程的非线性作用效应对水流挟沙力的贡献.本文提出的公式从泥沙输运及悬浮的角度去分析河口水流挟沙力,从而有利于河口冲淤特性的分析研究.对长江口而言,洪季水流对泥沙的输运作用大于悬浮作用,落淤的可能性大于冲刷;而枯季水流对泥沙的作用则以悬浮为主,冲刷的可能性大于落淤,从另一侧面解释了长江口"洪淤枯冲"的现象.  相似文献   

7.
辽东湾北部浅海区泥沙输送及其沉积特征   总被引:16,自引:1,他引:16  
苗丰民  李淑媛 《沉积学报》1996,14(4):114-121
根据实测资料,本文定量分析了辽东湾北部泥沙输送及其分布,并对辽河三角洲沉积区划作了初步讨论。研究表明本区泥沙以纵向搬运为特征。双台子河以西来沙和辽河西水道入海泥沙是区域东部拦门沙体和浅滩发育的主导因素。汛季大潮期,泥沙自西向东运移落淤在河口及毗邻浅水域;小潮期,泥沙除向东扩散外,大部泥沙向海方搬运。调查区可划分六个现代沉积作用区,即潮坪沉积区、辽河水下三角洲细粒沉积区、河口沙洲沉积区、波浪潮流冲蚀沉积区、河口冲积沉积区以及潮汐水道沉积区。  相似文献   

8.
河海交互作用沉积与平原地貌发育*   总被引:3,自引:15,他引:3  
河流是搬运陆源泥沙的主要动力,对相邻的海岸海洋沉积动力有巨大影响。中国河流汇入海洋中的泥沙曾占全球入海泥沙的10 % ,现代中国边缘海大陆架在晚更新世时曾是海岸平原,河-海交互作用是形成海岸平原与浅海输积泥沙的主要因素。本文选择5个不同类型的河流展示其不同的泥沙运动与河口沉积的特性以及对相邻陆架之影响,包括: 1)强潮型动力的鸭绿江河口湾,形成从陆向海与从海向陆的双向水流交汇沉积,海岸形成潮流脊体系。 2)季风波浪为主导动力的滦河口,以泥沙的横向运动为主,形成沙坝环绕的双重海岸,沉积粒径自海向陆减小; 沿岸浪流携运泥沙向河口两侧分布,使沙坝具有沙咀状的复合特点。 3)弱潮型、多沙的黄河口,径流于两侧堆积指状沙咀,沙咀下风侧形成粉砂粘土淤泥湾,沿岸流携运泥沙向渤海湾延伸为淤泥舌。 4)径流与沿岸流组合作用的沉积模式,以长江口为代表,泥沙沿岸向南输运为主导,向海岸与向内陆架构成颗粒变细的带状沉积,外陆架出露残留砂。 5)充填河口湾的三角洲,以珠江为代表,河流分汊与会潮点泥沙堆积,悬移质扩散至湾外,被沿岸流携带沿海岸向SW运移,外陆架为残留砂沉积。20世纪80年代以来,上述河流均受到人为活动的改造影响,河流自然过程与河海交互作用效应均发生改变。本文主要以滦河三角洲为例阐述河-海交互作用与平原的地貌特征。  相似文献   

9.
利用长系列的水文泥沙、水下地形和遥感影像等数据,通过数字地形高程模型和水动力数学模型等方法,探讨了伶仃洋茅洲河口的动力地貌演变过程及主要原因。结果表明:伶仃洋中滩海区近年冲刷态势明显,拦江沙与矾石浅滩呈现逐渐分离并有发育形成"新中槽"的演变趋势;茅洲河口门深槽的形成发育以落潮流动力作用为主,交椅湾深槽具有涨潮沟的性质,交椅沙形成发育对于稳定周边海区滩槽格局具有重要作用;大规模围涂造地和海床采砂等人类开发活动显著改变了伶仃洋的地形边界条件,进而影响河口水沙输移和滩槽格局,亟需加强监控。  相似文献   

10.
通过对交杯四沙表层现代沉积考察,分析了滩面沉积微地貌类型,并结合粒度分析和成分分析,探讨不同微地貌沉积特征,进而讨论了交杯四沙的形成过程。研究结果表明:交杯四沙表层发育有低潮线以下、低潮位波浪冲洗带、高潮位冲洗带、风暴潮冲洗带、滩顶冲越带、滨后冲越带、冲越扇中部、冲越扇前缘斜坡以及分流间湾区等9个微地貌单元,代表了9个微相分区。交杯四沙滩面主要以粉砂和细砂为主,整体上分选性中到差,矿物成分主要为石英和黏土矿物。交杯四沙东侧是磨刀门主河槽,以径流为主;西侧沿白藤海、灯笼沙至三灶岛水道以潮流为主。交杯三沙以南,四砂以北构成了分流间凹地环境。交杯四沙以南为东南向的波浪作用带。交杯四沙和其他交杯沙系列沙体具有相同的形成过程,首先由河槽底流将拦门沙沉积物向西搬运沉积形成浅滩,浅滩受潮流和波浪的改造其平面形态呈酒杯状,浅滩的东南面受东南向波浪的作用,前坡遭受侵蚀,在后坡产生堆积,由此沙滩逐渐向陆迁移,先后形成交杯一沙、二沙、三沙和四沙,交杯一沙、二沙和三沙已经合并成陆。随时间的推移,交杯四沙也将与交杯三沙相接成陆,新的交杯五沙有望形成,磨刀门西侧浅滩区将演变成由一系列反曲沙脊和潮滩相间而成的三角洲“滩-脊”平原。  相似文献   

11.
We describe the tidal circulation of a coastal plain estuary across a flood tide delta located at its entrance. The area connects the downstream portion of the main estuary extending 30–40 km inland to the more complex delta reach that consists of a shallow main channel and a series of smaller side channels. The delta acts as a frictionally dominated zone that modifies the tidal wave from a simple sinusoid to one with ebb currents that accelerate to maximum early in the tidal cycle and last more than one-half of the tidal cycle. Along smaller side channels, the tidal currents favor stronger flood or ebb currents, depending upon the local surrounding morphology. The phase difference between ebb currents in the small channels relative to those in the main channel cause some of the salt to be retained thus reducing the tendency of freshwater discharge to flush salt out of the system. This mechanism of retention differs from the selective withdrawal mechanism described for this estuary in Blanton et al. (2000).  相似文献   

12.
Drying estuarine sandbanks experience only that part of the tidal cycle around high water. In a partially progressive tidal wave, this means that the duration of the flood over the sandbank will be greater than that of the ebb: a process of tidal rectification. In this paper, we propose the hypothesis that this leads to flood-directed tidal residual currents over drying sandbanks. The hypothesis is tested by observation and a 2-D hydrodynamical model in the Conwy estuary, a vertically well-mixed macrotidal estuary in North Wales. The observations include tide gauge data, tidal cycle boat surveys, and fixed current meter data. The data show weak flood-directed residual currents over a drying sandbank and much stronger ebb-directed residuals in the channels along the sides of the sandbank. The model reproduces the observations in the vicinity of the sandbank and shows that the tidal rectification mechanism produces a general pattern of residual circulation in the estuary, with flood-directed flow in the drying areas and ebb-directed flow in the channels. The flood residuals are most marked near the estuary mouth where the tidal wave is most progressive in nature. The main application of this mechanism is believed to be in the transport of bedload sediment. The flood-directed residuals will tend to move the tops of the sandbanks upstream.  相似文献   

13.
In comparison to their temperate counterparts, sediment processes in tropical estuaries are poorly known and especially in African ones. The hydrodynamics of such environments is controlled by a combination of multiple processes including morphology, salinity, mangrove vegetation, tidal processes, river discharge, settling and erosion of mud and by physico-chemical processes as well as sediment dynamics.The aim of this study is to understand the sediment processes in this transitional stage of the estuary when the balance between river discharges and marine processes is reversing. Studying the hydrodynamics and sediment dynamics of the Konkouré Estuary has recently been made possible thanks to new data on bathymetry, sedimentary cover, salinity, water elevations, and current velocities. The Lower Konkouré is a shallow, funnel shaped, mesotidal mangrove-fringed, tide-dominated estuary, well mixed during low river discharge and stratified during high river discharge. The Konkouré Estuary is turbid despite the small amount of terrestrial input and its residual velocity at the mouth during low river discharges, landwards for two of the three branches, suggests a landward migration by tidal pumping of the suspended particulate matter. A Turbidity Maximum Zone (TMZ) is identified for typical states of the estuary with regard to fluvial and tidal components. Suspended sediment transport during a transitional stage between the rainy and dry seasons is known thanks to current velocity and Suspended Sediment Concentration (SSC) measurements taken in November 2003. The Richardson layered number calculation assesses that turbulence is the major mixing process in the water column, at least during the flood and ebb stages, whereas stratification occurs during the slack water periods. Tidal currents generate bottom erosion, and turbulence mixes the suspended sediment throughout the water column. As a result, a net sediment input is calculated from the western Konkouré outlet for two consecutive tidal cycles. Despite the net water export, almost 300 tons per tide reach the estuary through this outlet, for a moderate river flow.  相似文献   

14.
磨刀门水道咸潮上溯动力特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究磨刀门水道咸潮上溯的动力特性,基于非结构网格海洋模型(Finite Volume Coastal Ocean Model,FVCOM),构建了覆盖珠江河口及其上游网河区的高分辨率三维斜压数值模型,采用实测资料对其进行率定和验证,并开展了咸潮上溯的数值模拟计算。根据计算结果和实测资料,对磨刀门水道大、中、小潮期间的盐淡水分层与混合特征、盐分物质的分层输移机制进行分析,探讨其咸潮上溯强度时空分布差异的原因。结果表明:小潮期,底层累积盐通量明显大于表层,净输移方向为陆向;大潮期,表层累积盐通量明显大于底层,净输移方向为海向;而平衡点一般出现于中潮期,这就是磨刀门水道咸潮上溯最强和最弱时刻分别出现于小潮和大潮后的中潮期的原因所在。  相似文献   

15.
Data are presented from several experiments in the freshwater-saltwater interface (FSI) region of the Tamar Estuary. Longitudinal surveys of salinity and suspended particulate matter (SPM) at high water showed that the location of the FSI could be predicted in terms of a power-law regression with freshwater runoff. Longitudinal transects also were surveyed over periods of several hours. The FSI was observed to advect into the region on the flood with strong vertical mixing. After high water, stratification became intense as fresher water ebbed in the surface layers. The near-bed water in the stratified region began to ebb between 2 h and 3 h before low water. A model of the vertical structure of longitudinal currents showed that the enhanced stratification on the ebb, coupled with the longitudinal density gradient, partly produced this long period of slack, near-bed currents following high water. A strong turbidity maximum (TM) occurred during spring tides and was located slightly up-estuary of the FSI at high water. Longitudinal transects during a period of low freshwater runoff and large neap tide showed that at the start of the flood the TM was associated with the FSI region. As the FSI advected up-estuary on the flood there was considerable resuspension of sediment at the FSI. Some of this SPM moved with the FSI and reached the limit of saline intrusion, where it formed a slowly-eroding TM as particles settled during the long, high-water slack period. As the near-bed currents increased on the ebb and the FSI moved down-estuary, strong vertical mixing and resuspension of recently deposited sediment occurred in the unstratified water behind the FSI and the associated TM advected down-estuary. Additional effects were present with stronger tides and increased runoff.  相似文献   

16.
涨落潮槽是河口区的重要地貌单元,涨落潮槽的水动力有着明显的差异。通过对涨潮槽新桥水道和南小泓以及落潮槽南支主槽和南港表层沉积物的粒度、粘土矿物、重矿物以及磁性特征分析,发现落潮槽表层沉积物的粒径较粗,为粉砂质砂,涨潮槽沉积物主要是砂质粉砂。在双向水流的作用下,粘土矿物重新发生分配,涨落潮槽粘土矿物的组分变化不大。涨潮槽的重矿物颗粒百分含量中,稳定的不透明矿物比落潮槽有所减少,而比重小的片状矿物有所增加,碳酸盐含量较高。磁性矿物的含量在不同的地方相差很大,落潮槽中的亚铁磁性矿物含量高于涨潮槽。这些沉积特性的不同是对涨落潮槽内水动力差异响应的结果。  相似文献   

17.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

18.
This research investigates the dynamics of the axial tidal flow and residual circulation at the lower Guadiana Estuary, south Portugal, a narrow mesotidal estuary with low freshwater inputs. Current data were collected near the deepest part of the channel for 21 months and across the channel during two (spring and neap) tidal cycles. Results indicate that at the deep channel, depth-averaged currents are stronger and longer during the ebb at spring and during the flood at neap, resulting in opposite water transport directions at a fortnightly time scale. The net water transport across the entire channel is up-estuary at spring and down-estuary at neap, i.e., opposite to the one at the deep channel. At spring tide, when the estuary is considered to be well mixed, the observed pattern of circulation (outflow in the deep channel, inflow over the shoals) results from the combination of the Stokes transport and compensating return flow, which varies laterally with the bathymetry. At neap tide (in particular for those of lowest amplitude each month), inflows at the deep channel are consistently associated with the development of gravitational circulation. Comparisons with previous studies suggest that the baroclinic pressure gradient (rather than internal tidal asymmetries) is the main driver of the residual water transport. Our observations also indicate that the flushing out of the water accumulated up-estuary (at spring) may also produce strong unidirectional barotropic outflow across the entire channel around neap tide.  相似文献   

19.
Sedimentation in a river dominated estuary   总被引:2,自引:0,他引:2  
The Mgeni Estuary on the wave dominated east coast of South Africa occupies a narrow, bedrock confined, alluvial valley and is partially blocked at the coast by an elongate sandy barrier. Fluvial sediment extends to the barrier and marine deposition is restricted to a small flood tidal delta. Sequential aerial photography, sediment sampling and topographical surveys reveal a cyclical pattern of sedimentation that is mediated by severe fluvial floods which exceed normal energy thresholds. During severe floods (up to 10x 103 m3 s?1), lateral channel confinement promotes vertical erosion ofbed material. Eroded material is deposited as an ephemeral delta in the sea. After floods the river gradient is restored within a few months through rapid fluvial deposition and formation of a shallow, braided channel. Over an extended period (approximately 70 years) the estuary banks and bars are stabilised by vegetation and mud deposition. Subsequent downcutting in marginal areas transforms the channel to an anastomosing pattern which represents a stable morphology which adjusts to the normal range of hydrodynamic conditions. This cyclical pattern of deposition produces multiple fill sequences in such estuaries under conditions of stable sea level. The barrier and adjacent coastline prograde temporarily after major floods as the eroded barrier is reformed by wave action, but excess sediment is ultimately eroded as waves adjust the barrier to an equilibrium plan form morphology. Deltaic progradation is prevented by a steep nearshore slope, and rapid sediment dispersal by wave action and shelf currents. During transgression, estuarine sedimentation patterns are controlled by the balance between sedimentation rates and receiving basin volume. If fluvial sedimentation keeps pace with the volume increase of a basin an estuary may remain shallow and river dominated throughout its evolution and excess fluvial sediments pass through the estuary into the sea. Only if the rate of volume increase of the drowned river valley exceeds the volume of sediment supply are deep water environments formed. Under such conditions an estuary becomes a sediment sink and infills by deltaic progradation and lateral accretion as predicted by evolutionary models for microtidal estuaries. Bedrock valley geometry may exert an important control on this rate of volume increase independently of variations in the rate of relative sea level change. If estuarine morphology is viewed as a function of the balance of wave, tidal and fluvial processes, the Mgeni Estuary may be defined as a river dominated estuary in which deltaic progradation at the coast is limited by high wave energy. It is broadly representative of other river dominated estuaries along the Natal coast and a conceptual regional depositional model is proposed. Refinement of a globally applicable model will require further comparative studies of river dominated estuaries in this and other settings, but it is proposed that river dominated estuaries represent a distinct type of estuarine morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号