首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The Tan-Lu fault zone is the largest active tectonic zone in eastern China, with a complex history of formation and evolution, and it has a very important control effect on the regional structure, magmatic activity, the formation and distribution of mineral resources and modern seismic activity in eastern China. Xinyi City has a very important position as a segmental node in the Shandong and Suwan sections of the Tan-Lu fault zone. Predecessors have conducted research on the spatial distribution, occurrence and activity characteristics of the shallow crustal faults in the Suqian section of the Tan-Lu belt, and have obtained some new scientific understandings and results. However, due to different research objectives or limitations of research methods, previous researches have either focused on the deep crustal structure, or targeted on the Suqian section or other regions. However, the structural style and deep-shallow structural association characteristics of Xinyi section of Tan-Lu belt have not been well illustrated, nor its activity and spatial distribution have been systematically studied. In order to investigate the shallow crustal structure features, the fault activities, the spatial distribution and the relationship between deep and shallow structures of the Xinyi section of the Tan-Lu Fault, we used a method combining mid-deep/shallow seismic reflection exploration and first-break wave imaging. Firstly, a mid-deep seismic reflection profile with a length of 33km and a coverage number greater than 30 was completed in the south of Xinyi City. At the same time, using the first arrival wave on the common shot record, the tomographic study of the shallow crust structure was carried out. Secondly, three shallow seismic reflection profiles and one refraction tomography profile with high resolution across faults were presented. The results show that the Xinyi section of Tan-Lu fault zone is a fault zone composed of five concealed main faults, with a structural pattern of “two grabens sandwiched by a barrier”. The five main faults reveal more clearly the structural style of “one base between two cuts” of the Tan-Lu fault zone. From west to east, the distribution is as follows: on the west side, there are two high-angle faults, F4 and F3, with a slot-shaped fault block falling in the middle, forming the western graben. In the middle, F3 and F2, two normal faults with opposite dip directions, are bounded and the middle discontinuity disk rises relatively to form a barrier. On the east side, F2 and F1, two conjugate high-angle faults, constitute the eastern graben. The mid-deep and shallow seismic reflection profiles indicate that the main faults of the Xinyi section of Tan-Lu fault zone have a consistent upper-lower relationship and obvious Quaternary activities, which play a significant role in controlling the characteristics of graben-barrier structure and thickness of Cenozoic strata. The shape of the reflective interface of the stratum and the characteristics of the shallow part of the fault revealed by shallow seismic reflection profiles are clear. The Mohe-Lingcheng Fault, Xinyi-Xindian Fault, Malingshan-Chonggangshan Fault and Shanzuokou-Sihong Fault not only broke the top surface of the bedrock, but also are hidden active faults since Quaternary, especially the Malingshan-Chonggangshan Fault which shows strong activity characteristics of Holocene. The results of this paper provide a seismological basis for an in-depth understanding of the deep dynamics process of Xinyi City and its surrounding areas, and for studying the deep-shallow tectonic association and its activity in the the Xinyi section of the Tan-Lu Fault.  相似文献   

2.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

3.
郯庐断裂带是中国东部最大的一个活动构造带,其内部结构非常复杂,不同区段表现出不同特征的构造样式.本文采用浅层地震反射波成像技术对郯庐断裂带宿迁段的近地表结构进行了高分辨率成像,利用该区已有的深地震反射剖面数据,采用初至波层析成像方法获得了郯庐断裂带的浅层P波速度结构.结果表明,郯庐断裂带宿迁段是一个由多条断裂以及凹陷和隆起构成的复杂构造带,且新生代地层厚度和地震波速分布明显受到断裂的影响与控制.郯庐断裂带的东、西两侧为基底隆起区,近地表速度结构呈现为明显的高速特征,新生代地层厚度小于200m.郯庐断裂带总体显示为低速凹陷结构,新生代地层厚度在300~600m之间变化,最厚处位于宿迁市的陵城镇附近.郯庐断裂带宿迁段主要由5条断裂构成,从这些断裂的上断点埋深和第四纪活动特征来看,郯庐断裂带的东边界断裂F_1和西边界断裂F_4的活动性相对较弱,为第四纪早期活动断裂.断裂F_2和F_3控制了郯庐断裂带内部的新生代凹陷,两者的活动时代分别为中更新世和晚更新世.安丘—莒县断裂F_5位于断裂F_1和F_2之间,由2条相向而倾的分支断层F_5和F_(5-1)构成,其活动时代分别为全新世和晚更新世.研究结果为进一步认识郯庐断裂带宿迁段的近地表特征及其活动性提供了新证据.  相似文献   

4.
郯庐断裂带莒县胡家孟晏地震破裂带的发现   总被引:4,自引:3,他引:1       下载免费PDF全文
郯庐断裂带是中国东部最主要的一条活动断裂带。在该断裂带中部,沂沭断裂东地堑的潍坊—嘉山段中发育了1条长360km的全新世活动断裂带(F5),在该全新世断裂带的北段和中段分别发生了公元70年的安丘地震和公元1668年的郯城地震。2003年底我们考察沭河断裂带时,在莒县境内发现了1条长约7km的地震破裂带,作为活动断层应该归属于F5断裂带,但其是一条独立的地震破裂段还是归属于1668年郯城8.5级地震破裂带有待于进一步的研究。尽管如此,探槽揭示出的上覆未经破坏的地层的14C年代表明,该破裂带在(2140±190)aBP以来没有过活动,因此我们认为其作为1条独立破裂段的可能性较大  相似文献   

5.
Anqiu-Juxian Fault(F5) is the latest active fault in the eastern graben of the middle segment of the Tanlu fault zone. In recent years, the research results of F5 in Jiangsu Province are abundant, and it is found that Holocene activity is prevalent in different segments, and the movement pattern is dominated by dextral strike-slip and squeezing thrust. The Anhui segment and the Jiangsu segment of the Tan-Lu fault zone are bounded by the Huaihe River. Previous studies have not discussed the extension and activity of F5 in the south of the Huaihe River in Anhui Province. This paper chooses the Ziyangshan segment of Tanlu fault zone in the south of the Huaihe River as the breakthrough point, which is consistent with the linear image feature of extension of F5 in Jiangsu Province. Through the remote sensing image interpretation, geological and geomorphological investigation and trench excavation, we initially get the following understanding:(1)The linear structural features of the Ziyang segment are clear, and the fault is developed on the gentle slope of the Mesozoic red sandstone uplift along the Fushan-Ziyangshan, which is the southern extension of the Anqiu-Juxian Fault(F5); (2)The excavation of the Zhuliu trench reveals that the late Pleistocene clastic layers are interrupted, and the late late Pleistocene to early Holocene black clay layers are filled along the fault to form black fault strips and black soil-filled wedges, indicating that the latest active age of the fault is early Holocene; (3)The excavation of Zhuliu trench reveals that there are at least 3 paleo-earthquake events since the Quaternary, the first paleo-seismic event is dated to the early and middle Quaternary, and the 2nd paleo-seismic event is 20.10~13.46ka BP, the age of the third paleo-seismic event is(10.15±0.05)~(8.16±0.05)ka BP. These results complement our understanding of the late Quaternary activity in the Anhui segment of the Tanlu fault zone, providing basic data for earthquake monitoring and seismic damage prevention in Anhui Province.  相似文献   

6.
The fault F5 is considered as the most active fault in the Tanlu fault zone(Yi-Shu fault zone), which is located from Weifang of Shandong Province to Jiashan of Anhui Province, with a length of 360km. It has always been a focus of concern to many geoscientists because of its complexity and importance. But, for a long period of time, there exists biggish indetermination in the accurate position and active ages of the fault F5 in Suqian section of Tanlu fault zone. Seismic reflection exploration is the main technique in present urban active faults detecting. In order to investigate the spatial distribution, characteristics and activities of the fault F5 in covered terrains, we carried out a systematic survey to the fault with shallow seismic prospecting method and obtained the accurate position and development characteristics of the fault. The results show that the fault F5 continues to develop toward south rather than ending at the Huancheng South Road of Suqian City. F5 is mainly composed of two main faults, which dip in opposite directions and almost vertically. Near the Sankeshu town, F5 is composed of three faults with right-stepping, forming a small pull-apart basin with length of 6km, width of 2.5km, controlling the deposition of Neogene and Quaternary strata. By combining the results of composite drilling section and trenching, we make a conclusion that the western branch of fault F5 is a Holocene active fault, and the eastern branch is a Pleistocene active fault. Our general view is that fault F5 is a Holocene active fault.  相似文献   

7.
The fault along the southern margin of the Wuwei Basin, located in the eastern Hexi Corridor, NW China, plays an important role in the thrust fault system in the northern Qilian Mountains. The activities of this fault resulted in the generation of the Gulang earthquake(MS8.0) in 1927. Based on remote sensing image interpretation, geological and geomorphic observations in the field and 14C geochronological dating results, we conducted a detailed research on the geometry and kinematics of the fault. According to the discontinuous geometric distribution and variable strike directions, we divide this fault into 5 segments: Kangningqiao Fault(F1), Nanyinghe Fault(F2), Shangguchengcun-Zhangliugou Fault(F3), Tajiazhuang Fault(F4)and Yanjiazhuang Fault(F5). Results indicate that this fault, with a total of 60km long trace at the surface, has been active since the late Pleistocene. It behaves predominantly as a thrust fault and is accompanied with a locally sinistral strike-slip component along the Nanyinghe Fault(F2). Intensive activities of this fault in Holocene have caused extensive occurrence of dislocated landforms along its strike. Some measured displacements of the dislocated geologic or geomorphic units, combined with the 14C dating results, yield a vertical slip rate of (0.44±0.08)mm/a on this fault in Holocene, and a sinistral strike-slip rate of (1.43±0.08)mm/a on the Nanyinhhe Fault (F2) in late Pleistocene.  相似文献   

8.
Along the northern piedmont of Mt. Lishan, the characteristics and locations of the active normal Lishan fault in west of Huaqing Pool provide important evidences for determining the seismotectonic environment, seismic stability evaluation of engineering in the eastern Weihe Basin. After reviewing the results from high-density resistivity method, seismic profile data, geological drillhole section and trenching in west of the Huaqing Pool, it is found that the strike of western normal Lishan Fault changes from EW direction at the eastern part to the direction of N60°W, and the fault consists of two branches, dipping NE with a high dip angle of~75°. The artificial shallow seismic profile data reveals that the attitude of strata near Lishan Fault mainly dips to south, which is presumed to be related to the southward tilt movement of Mt. Lishan since the Cenozoic. The section of geological drillhole reveals that since the late middle Pleistocene, the displacement of the paleo-soil layer S2 is about 10m. And the maximum displacement of western Lishan Fault recorded in the paleo-soil layer S1 reaches 7.8m since the late Pleistocene. In addition, evidences from trench profile show that the western Lishan Fault was active at least 3 times since Malan loess deposition with 14 C dating age(32 170±530)Cal a BP. The multiple activities of the Lishan Fault result in a total displacement about 3.0m in the Malan loess layer L1. The latest activity of the western Lishan Fault produced a displacement of about 0.9m in the early Holocene loess layer L0((8 630±20)Cal a BP)and caused obvious tensile cracks in the Holocene dark leoss layer S0((4 390±20)Cal a BP). Briefly, we have obtained a vertical movement rate of about 0.11~0.19mm/a since the Holocene((8 630±20)Cal a BP)in the western extension of the Lishan Fault, the recurrence interval of earthquakes on the fault is about(10.7±0.5)ka, and the co-seismic surface rupture in a single event is inferred to be about 0.9m.  相似文献   

9.
The Fodongmiao-Hongyazi Fault (FHF)is one of the most active faults of the northern Qilian thrust fault zone. The 1609 Hongyazi M7 1/4 earthquake occurred on the east segment of the FHF, an area with a complex geometry at the Mayinghe River site. The seismogenic pattern of this earthquake revealed by complex surface ruptures remains unclear. In this paper, we focus on active tectonic deformation around the Hujiatai anticline (HA)in the Mayinghe River site. Combining with topographic survey via dGPS across deformed terraces and alluvial fans, a field survey of the geological section across the HA, the characteristics of the active fold and several sub-faults were constrained. Meanwhile, combined with the seismic reflection profiles passing through the anticline, the correspondence relationship between surface expressions of this tectonic and the deep structure was discussed. According to our research, the HA is a result of northward propagation of the range-front thrust fault F1. At the same time, a thrust fault F2 with dextral strike-slip motion and a thrust fault F4 were formed on the east side and north side of the HA, respectively. These two active faults accommodated local deformation. Trench results and 14C dating reveal that the 1609 Hongyazi M7 1/4 earthquake ruptured the T1 terrace in the Huangcaoba site. Combined with previous field investigations and literature about the 1609 Hongyazi earthquake, we suggest that this earthquake occurred on the range-front fault F1, and the depth of the hypocenter may be about 8~22km.  相似文献   

10.
沂沭断裂带重力场及地壳结构特征   总被引:5,自引:2,他引:3  
沂沭断裂带为郯庐断裂带山东段,新构造运动显著,是华北地区的强震活动带之一。文中收集了该地区的布格重力数据,利用小波多尺度分析方法对重力场进行有效分离,研究区域地壳结构特征及断裂空间展布,并应用Parker变密度模型对区域莫霍面进行反演分析,得到以下几点结论:1)重力区域场显示,沂沭断裂带形成了NNE走向的大型重力梯度带,分隔了鲁西、鲁东地块,成为区域内重要的地球物理分界线。2)重力局部场显示,中上地壳结构复杂,沂沭带内部呈现两堑一垒的重力异常格局,5条主干断裂形成线性梯度带分布于东、西地堑内,鲁西块体的多条NW向活动断裂交切于沂沭断裂带,多数断裂只交切于西地堑,而蒙山山前断裂和苍尼断裂横穿沂沭断裂带;下地壳结构相对简单,发生明显的褶曲构造,表现出大规模高、低密度异常相间排列的典型特征。3)区域莫霍面形态东高西低,沂沭断裂带形成了莫霍面陡变带,造成了东西分异格局,潍坊东—莒县—临沂一线出现莫霍面上隆区,具有强震发生的深部孕震环境。4)区域内地震多发于高、低重力异常转化带之间,特别是活动断裂对应的重力梯度条带之上,地震的发生与断裂活动有着密切的关系,沂沭断裂带地震活动性最强,且东地堑强于西地堑。  相似文献   

11.
The Riyue Mt. Fault is a secondary fault controlled by the major regional boundary faults (East Kunlun Fault and Qilian-Haiyuan Fault). It lies in the interior of Qaidam-Qilianshan block and between the major regional boundary faults. The Riyue Mt. fault zone locates in the special tectonic setting which can provide some evidences for recent activity of outward extension of NE Tibetan plateau, so it is of significance to determine the activity of Riyue Mt. Fault since late Pleistocene to Holocene. In this paper, we have obtained some findings along the Dezhou segment of Riyue Mt. Fault by interpreting the piedmont alluvial fans, measuring fault scarps, and excavating trenches across the fault scarp. The findings are as follows:(1) Since the late Pleistocene, there are an alluvial fan fp and three river terraces T1-T3 formed on the Dezhou segment. The abandonment age of fp is approximately (21.2±0.6) ka, and that of the river terrace T2 is (12.4±0.11) ka. (2) Since the late Pleistocene, the dextral strike-slip rate of the Riyue Mt. Fault is (2.41±0.25) mm/a. In the Holocene, the dextral strike-slip rate of the fault is (2.18±0.40) mm/a, and its vertical displacement rate is (0.24±0.16) mm/a. This result indicates that the dextral strike-slip rate of the Riyue Mt. Fault has not changed since the late Pleistocene. It is believed that, as one of the dextral strikeslip faults, sandwiched between the the regional big left-lateral strike-slip faults, the Riyue Mt. Fault didn't cut the boundary zone of the large block. What's more, the dextral strike-slip faults play an important role in the coordination of deformation between the sub-blocks during the long term growth and expansion of the northeast Tibetan plateau.  相似文献   

12.
Pangusi-Xinxiang Fault is a great-scale, deep-incising buried active fault in the southern margin of the Taihang Mountains. In order to find out the location, characteristics, structure and activities of Pangusi-Xinxiang Fault, shallow reflection profiles with six lines crossing the buried faults were carried out. In this paper, based on the high-resolution seismic data acquisition technology and high-precision processing technology, we obtained clear images of underground structures. The results show that Pangusi-Xinxiang Fault is a near EW-trending Quaternary active fault and its structural features are different in different segment. The middle part of the fault behaves as a south-dipping normal fault and controls the north boundary of Jiyuan sag; The eastern part of the fault is a north-dipping normal fault and a dividing line of Wuzhi uplift and Xiuwu sag. The shallow seismic profiles reveal that the up-breakpoint of the Pangusi-Xinxiang Fault is at depth of 60~70m, which offsets the lower strata of upper Pleistocene. We infer that the activity time of this fault is in the lower strata of late Pleistocene. In this study, not only the location and characteristics of Pangusi-Xinxiang Fault are determined, but also the reliable geological and seismological evidences for the fault activity estimation are provided.  相似文献   

13.
Existing achievements about Baotou Fault demonstrate it as a buried eastern boundary of the Baiyanhua Basin in Hetao active fault subsidence zone,striking NE.More data is needed to assess its activity.Located in the relay ramp between Wulashan Fault and Daqingshan Fault,Baotou Fault's activity is of great importance to discuss the linkage mode and the response to the earthquake of the adjacent fault.Also it is necessary to the knowledge of the characteristic of the seismic tectonic in local area.Recently it is prevalent to combine shallow seismic profile and composite drilling section to study the activity of the buried fault.Shallow seismic profile indicates that Baotou Fault is a normal fault,inclining to NW.The displacement of the Tg at 75m underground is 25m.Composite drilling section indicates that it is a growth fault,the up-break point of which is 45.6m underground and ends in brownish red clay strata of early Pleistocene.In comparison,the upper Late Pleistocene strata are out of the influences of the tectonic subsidence zone.Baotou Fault's activity is limited to the early Pleistocene.  相似文献   

14.
The Daxing Fault is an important buried fault in the Beijing sub-plain, which is also the boundary fault of the structural unit between Langgu sub-sag and Daxing sub-uplift. So far, there is a lack of data on the shallow tectonic features of the Daxing Fault, especially for the key structural part of its northern section where it joins with the Xiadian Fault. In this paper, the fine stratigraphic classifications and shallow tectonic features of the northern section in the main Daxing Fault are explored by using three NW-trending shallow seismic reflection profiles. These profiles pass through the Daxing earthquake(M6¾)area in 1057AD and the northern section of the main Daxing Fault. The results show that seven strong reflection layers(T01—T03, TQ and T11—T13)are recognized in the strata of Neogene and Quaternary beneath the investigated area. The largest depth of strong reflection layer(T13)is about 550~850ms, which is interpreted as an important surface of unconformity between Neogene and Paleogene or basement rock. The remaining reflection layers, such as T01 and TQ, are interpreted as internal interfaces in Neogene to Quaternary strata. There are different rupture surfaces and slip as well as obviously different structural features of the Daxing Fault revealed in three shallow seismic reflection profiles. The two profiles(2-7 and 2-8)show obvious rupture surfaces, which are the expression of Daxing Fault in shallow strata. Along the profile(2-6), which is located at the end of the Daxing fault structure, a triangle deformation zone or bending fracture can be identified, implying that the Daxing Fault is manifested as bending deformation instead of rupture surfaces at its end section. This unique structural feature can be explained by a shearing motion at the end of extensional normal fault. Therefore, the Daxing Fault exhibits obviously different tectonic features of deformation or displacement at different structural locations. The attitude and displacement of the fault at the shallow part are also different to some extent. From the southwest section to the northeast section of the fault, the dip angle gradually becomes gentler(80°~60°), the upper breakpoint becomes deeper(160~600m), and the fault displacement in Neogene to Quaternary strata decreases(80~0m). Three shallow seismic reflection profiles also reveal that the Daxing Fault is a normal fault during Neogene to early Quaternary, and the deformation or displacement caused by the activity of the fault reaches the reflection layer T02. This depth is equivalent to the sedimentary strata of late Early-Pleistocene. Therefore, the geometry and morphology of the Daxing Fault also reveal that the early normal fault activity has continued into the Early Pleistocene, but the evidence of activity is not obvious since the late Pleistocene. The earthquakes occurring along the Daxing Fault, such as Daxing earthquake(M6¾)in 1057AD, may not have much relation with this extensional normal fault, but with another new strike-slip fault. A series of focal mechanism solutions of modern earthquakes reveal that the seismic activity is closely related to the strike-slip fault. The Daxing Fault extends also downwards into the lower crust, and may be cut by the steeply dipping new Xiadian Fault on deep seismic reflection profile. The northern section of the Daxing Fault strikes NNE, with a length of about 23km, arranged in a right step pattern with the Xiadian Fault. Transrotational basins have been developed in the junction between the northern Daxing Fault and the southern Xiadian Fault. Such combined tectonic features of the Daxing Fault and Xiadian Fault evolute independently under the extensional structure background and control the development of the Langgu sub-sag and Dachang sub-sag, respectively.  相似文献   

15.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

16.
安丘-莒县断裂是沂沭断裂带最主要的活动断裂,对强震的发生具有明显的控制作用。该断裂的安丘—朱里段由南流段、双官—眉村段和朱里段3条右阶斜列的次级断裂所组成,以右旋走滑活动为主,兼有正断或逆冲活动分量;其最新活动时代推断为晚更新世—全新世早期。根据断裂活动性的最新研究成果,认为在莒县至昌邑之间安丘-莒县断裂仍是占主导地位的活动断裂,与公元前70年安丘7级地震的发生具有密切关系  相似文献   

17.
古地震研究是构造地质基础研究工作之一,获得较为精细的古地震结果有利于提高对断层构造变形的样式、强度以及时间的认识。焉耆盆地是南天山东段的山间盆地,现今的构造应力场特征以挤压兼有走滑为主。盆地南北缘断裂均为全新世活动断裂,南缘开都河断裂以走滑运动为主。盆地北缘断裂向盆内扩展的新生和静逆断裂-褶皱带以逆冲运动为主,且具备发生7级以上大地震的能力。因此,对于焉耆盆地北缘和静逆断裂-褶皱带的古地震破裂方式和发生时间的研究具有重要意义。调查发现,其中的哈尔莫敦背斜南翼主逆断裂以30°左右向盆内逆冲,在河漫滩和T1阶地上形成了3排断层陡坎。在3条断层陡坎上开挖的5个探槽中,通过标志地层建立的时间序列可以确定6次古地震事件的先后关系。利用14C和光释光(OSL)测年手段获得了探槽中相关地层和坎前堆积物的沉积时代,利用逐次限定法得到了各次古地震事件的发生时间和全新世以来2ka左右的古地震复发间隔。结果显示F1断层在所有的古地震事件中都发生了破裂,F2断层只在事件E时产生了破裂,F3断层只在事件D和事件E中发生过破裂。从古地震事件上分析,事件D是一次3条断层同时破裂的事件,事件E是一次F1和F32条断层同时破裂的事件,其他事件都只在F1断层上破裂。和静逆断裂的古地震破裂同时存在必然性和不确定性。  相似文献   

18.
In order to understand the mechanism of the 1668 MS8.5 earthquake occurred in Tancheng, it is important to probe the fine deep geological structure beneath the epicenter. A MT profile 20km south of the epicenter has been deployed. There are 17 sites along the profile, with a 3km average separation. Signals in Ex, Ey, Hx and Hy were measured in a cross manner, with x-axis orientated to the north. Record length for each site was at least 20h. The impedance and phase at sites in high cultural noisy environment were estimated by remote reference technique. As the Tanlu Fault Zone(TLFZ)is in NNE, nearly northerly, thus YX mode was considered as TM mode. Gauss-Newton inversion was done in 2-D mode with only the TM impedance and phase as input data. The electrical sections of 10km and 40km depth were respectively obtained after 8 iterations. The both initial models were created by Bostic approximation. The sections reveal the following features. The TLFZ consists of five faults, from east to west numbered as F0 to F4. F1 is the primary fault, steeply dipping west down to mantle, which has turned into a buried one overthrust by the east dipping Fault F0. F2 and F3 dip east at 45 degrees, parallel to F4, truncated by F1 at depth. F4 dips east in the shallow subsurface and gradually dips to west toward depth through the entire crust merging with F1 to form a bigger one. These four faults constitute a flower-shaped structure, showing the nature of strike-slip of the TLFZ, associated with normal faulting in the late Yanshanian to early Himalayan. F1 dips west, overthrust by east-dipping F0, implying the compression from the westward subduction of the Pacific plate, thus present-day compression is superposed on the early tensile and strike-slip feature. Based on MT data, it is inferred that the 1668 Tancheng M8.5 earthquake occurred at the junction of F1 and F3 about 15km deep. Thus it was likely resulted from westward compression of the Pacific plate, leading to thrust of the Sulu uplift along F0, inducing activity of F1 at depth, reactivated F3, and adjusting the stress distribution in the region.  相似文献   

19.
郯庐断裂带中南段的岩石圈精细结构   总被引:9,自引:5,他引:4       下载免费PDF全文
郯庐断裂带是中国东部规模最大的构造活动带,有着复杂的形成演化历史,对中国东部的区域构造、岩浆活动、矿产资源的形成和分布以及现代地震活动都有重要控制作用.2010年在郯庐断裂带中南段的江苏宿迁市附近,采用深地震反射探测方法对郯庐断裂带及其两侧地块的岩石圈结构进行了解剖.结果表明,该区莫霍面和岩石圈底界均向西倾,其中,地壳厚度约为31~36km,岩石圈厚度约为75~86km,且岩石圈厚度在郯庐断裂带下方出现突变.郯庐断裂带在剖面上表现为由多条主干断裂组成的花状构造,其内部发育有断陷盆地和挤压褶皱,具有伸展、挤压和走滑并存的构造形迹,暗示郯庐断裂带的形成和演化经历了多期复杂的构造活动.这一断裂带错断了近地表沉积层,向下切割莫霍面和岩石圈地幔,属岩石圈尺度的深大断裂构造系统.软流圈高温高压热物质沿断裂带的上涌、岩浆底侵或热侵蚀作用造成岩石圈出现拉张伸展和岩石圈减薄,并可能使岩石圈组构及其物质成分发生改变.本项研究结果不但可进一步加深对郯庐断裂带深、浅部结构的认识,而且还可为分析研究华北克拉通东部的深部过程和浅部构造响应提供资料约束.  相似文献   

20.
To research the faults distribution and deep structures in the southern segment of Tan-Lu fault zone(TLFZ) and its adjacent area, this paper collects the Bouguer gravity data and makes separation by the multi-scale wavelet analysis method to analyze the crustal transverse structure of different depths. Meanwhile Moho interface is inversed by Parker variable density model. Research indicates that the southern segment of TLFZ behaves as a NNE-directed large-scale regional field gravity gradient zone, which separates the west North China-Dabie orogen block and the east Yangtze block, cutting the whole crust and lithosphere mantle. There are quite differences of density structures and tectonic features between both sides of this gradient belt. The sedimentary and upper crustal density structure is complex. The two east branches of TLFZ behave as linear gravity anomalous belt throughout the region, whereas the two west branches of TLFZ continue to extend after truncating the EW-trending gravity anomaly body. The lower crustal density structure is relatively simple. TLFZ behaves as a broad and gentle low abnormal belt, which reflects the Cretaceous-Paleogene extension environment caused graben structure. The two west branches of TLFZ, running through Hefei city, extend southward along the west margin of Feidong depression and pinch out in Shucheng area due to the high density trap occlusions in the south of Shucheng. The Feizhong Fault, Liu'an-Hefei Fault, and Feixi-Hanbaidu Fault intersect the two west branch faults of TLFZ without extending to the east. Recent epicenters are mainly located in conversion zones between the high-density and the low-density anomaly, especially in TLFZ and the junction of the faults, where earthquakes frequently occurred in the upper and middle crust. As strong earthquakes rarely occur in the southern segment of TLFZ, considering its deep feature of abrupt change of the Moho and intersections with many EW-trending faults, the hazard of strong earthquake cannot be ignored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号