首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The performance of evaporation schemes with and approach and their combination within resistance representation of evaporation from bare soil surface is discussed. For this purpose nine schemes, based on different functions of or , on the ratio of the volumetric soil moisture content and its saturated value are used.The quality of the chosen schemes has been evaluated using the results of time integration by the coupled soil moisture and surface temperature prediction model, BARESOIL, using in situ data. A sensitivity analysis was made using two sets of data derived from the volumetric soil moisture content of the top soil layer. One with values below the wilting point (0.17 m3m–3) and the second with values above 0.20m3m–3. Data sets were obtained at the experimental site Rimski anevi, Yugoslavia, from the bare surface of a chernozem soil.With 4 Figures  相似文献   

2.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

3.
It is shown that the ratio of standard deviation of lateral velocity to the friction velocity, /u *, and therefore wind direction fluctuations, are sensitive to mesoscale terrain properties. Under neutral conditions, /u * is almost 40% larger in rolling terrain than over a horizontal surface. In the lee of a low mountain, the fluctuations may be 2.5 times as strong as over horizontal terrain. In contrast, vertical velocity fluctuations are little influenced by mesoscale terrain features.Now with Air Weather Service, Offutt AFB, Omaha, Nebraska.  相似文献   

4.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

5.
Summary A simple parameterization for the estimation of turbulent kinetic energy (TKE) and momentum flux profiles under near-neutral stratification based on sodar measurements of the vertical velocity variance has been tested using data from the LINEX-2000 experiment. Measurements included operation of a phased-array Doppler sodar DSDPA.90 and of a sonic anemometer USA-1 mounted at a meteorological tower at a height of 90m. Good agreement has been found between the TKE and momentum flux values derived from the sonic and sodar data (with correlation coefficients r>0.90 and a slope of the regression lines of about 1.01.1) suggesting the possible use of sodar measurements of w 2 to derive turbulence parameter profiles above the tower range.  相似文献   

6.
Recently Wilson and Flesch (Boundary-Layer Meteorology, 84, 411-426, 1997) suggested that the average increment d z to the orientation = arctan(w/u) of the Lagrangian velocity-fluctuation vector can be used to distinguish the better Lagrangian stochastic models within the well-mixed class. Here it is demonstrated that the specification of d z constitutes neither a sufficient or universally applicable criterion to distinguish the better Lagrangian stochastic models within the well-mixed class. The hypothesis made by Wilson and Flesch that Lagrangian stochastic models with /PE irrotational are zero-spin models, having d z=0, is proven  相似文献   

7.
Summary The standard equations for the theory of atmospheric tides are solved here by an integral representation on the continuous spectrum of free oscillations. The model profile of back-ground temperature is that of the U.S. Standard Atmosphere in the lower and middle atmosphere, and in the lower thermosphere, above which an isothermal top extends to arbitrarily great heights. The top is warm enough to bring both the Lamb and the Pekeris modes into the continuous spectrum.Computations are made for semidiurnal lunar tidal pressure at sea level at the equator, and the contributions are partitioned according to vertical as well as horizontal structure. Almost all the response is taken up by the Lamb and Pekeris modes of the slowest westward-propagating gravity wave. At sea level, the Lamb-mode response is direct and is relatively insensitive to details of the temperature profile. The Pekeris mode at sea level has an indirect response-in competition with the Lamb mode-and, as has been known since the time of its discovery, it is quite sensitive to the temperature profile, in particular to stratopause temperature. In the standard atmosphere the Lamb mode contributes about +0.078 mb to tidal surface pressure at the equator and the Pekeris mode about –0.048 mb.The aim of this investigation is to illustrate some consequences of representing the tide in terms of the structures of free oscillations. To simplify that task as much as possible, all modifying influences were omitted, such as background wind and ocean or earth tide. Perhaps the main defect of this paper's implementation of the free-oscillation spectrum is that, in contrast to the conventional expansion in the structures of forced oscillations, it does not include dissipation, either implicity or explicity, and thus does not satisfy causality. Dissipation could be added implicity by means of an impedance condition, for example, which would cause up-going energy flux to exceed downgoing flux at the base of the isothermal top layer. To achieve complete causality, however, the dissipation must be modeled explicity. Nevertheless, since the Lamb and Pekeris modes are strongly trapped in the lower and middle atmosphere, where dissipation is rather weak (except possibly in the surface boundary layer), more realistic modeling is not likely to change the broad features of the present results.Symbols a earth's mean radius; expansion coefficient in (5.3) - b recursion variable in (7.4); proximity to resonance in (9.2) - c sound speed in (2.2); specific heatc p in (2.2) - f Coriolis parameter 2sin in (2.2) - g standard surface gravity - h equivalent depth - i ; discretization index in (7.3) - j index for horizontal structure - k index for horizontal structure; upward unit vectork in (2.2) - m wave number in longitude - n spherical-harmonic degree; number of grid layers in a model layer - p tidal pressure perturbation; background pressurep 0 - q heating function (energy per mass per time) - r tidal state vector in (2.1) - s tidal entropy perturbation; background entropys 0 - t time - u tidal horizontal velocityu - w tidal vertical component of velocity - x excitation vector defined in (2.3); vertical coordinate lnp */p 0 [except in (3.8), where it is lnp /p 0] - y vertical-structure function in (7.1) - z geopotential height - A constant defined in (6.2) - C spherical-harmonic expansion coefficient in (3.6) - D vertical cross section defined in (5.6) and (5.9) - E eigenstate vector - F vertical-structure function for eigenstate pressure in (3.2) [re-defined with WKB scaling in (7.2)] - G vertical-structure function for eigenstate vertical velocity in (3.2) [re-defined with WKB scaling in (7.2)] - H pressure-scale height - I mode intensity defined in (8.1) - K quadratic form defined in (4.4) - L quadratic form defined in (4.4); horizontal-structure magnification factor defined in (5.11) - M vertical-structure magnification factor defined in (4.6) - P eigenstate pressure in (3.2); tidal pressure in (6.2) - R tidal state vector in (5.1) - S eigenstate entropy in (3.2); spherical surface area, in differential dS - T background molecular-scale (NOAA, 1976) absolute temperatureT 0 - U eigenstate horizontal velocityU in (3.2); coefficient in (7.3) - V horizontal-structure functionV for eigenstate horizontal velocity in (3.2); recursion variable in (7.3) - W eigenstate vertical velocity in (3.2) - X excitation vector in (5.1) - Y surface spherical harmonic in (3.7) - Z Hough function defined in (3.6) - +dH/dz - (1––)/2 - Kronecker delta; Dirac delta; correction operator in (7.6) - equilibrium tide elevation - (square-root of Hough-function eigenvalue) - ratio of specific gas constant to specific heat for air=2/7 - longitude - - - background density 0 - eigenstate frequency in (3.1) - proxy for heating functionq =c P/t - latitude - tide frequency - operator for the limitz - horizontal-structure function for eigenstate pressure in (3.2) - Hough function defined in (6.2) - earth's rotation speed - horizontal gradient operator - ()0 background variable - ()* surface value of background variable - () value at base of isothermal top layer - Õ state vector with zerow-component - , energy product defined in (2.4) - | | energy norm - ()* complex conjugate With 10 Figures  相似文献   

8.
Six locations across mainland Portugal were selected for exposing Parmelia sulcata, for a one-year period (8 months for one site), with simultaneous measurement of total (dry + wet) deposition (one-month periods). The exposed lichens and the total (dry + wet) deposition were analysed for cobalt contents by INAA (instrumental neutron activation analysis) and ICP-MS (inductively coupled plasma mass spectroscopy), respectively. The designated wet deposition was evaluated through the collected water volume; the designated dry deposition was assessed after the (dried) residual mass of the wet deposition. An excellent agreement between Co contents in exposed lichens and the cumulative (1) Co contents in the dry deposition, (2) dry deposition, and (3) wet deposition has been found for the locations with alternate drought and precipitation months, high dry deposition, and high Co contents in the latter. Continuous rainfall was found to hinder the Co accumulation in the lichen due to its release from the lichen and/or lower Co contents in the dry deposition. At three locations, P. sulcata Co contents, after subtraction of the background (before exposure), equalled or exceeded the Co contents in the cumulative dry deposition at the end of the exposure time. The optimal exposure period for this species likely depends on the exposure conditions.  相似文献   

9.
A numerical study of stably stratified flow over a three-dimensional hill is presented. Large-eddy simulation is used here to examine in detail the laboratory experimental flows described in the landmark work of Hunt and Snyder about stratified flow over a hill. The flow is linearly stratified and U/Nh is varied from 0.2 to 1.0. Here N and U are the buoyancy frequency and freestream velocity respectively, and h is the height of the hill. The Reynolds number based on the hill height is varied from 365 to 2968. The characteristic flow patterns at various values of U/Nh have been obtained and they are in good agreement with earlier theoretical and experimental results. It is shown that the flow field cannot be predicted by Drazin's theory when recirculation exists at the leeside of the hill even at UNh 1. The wake structure agrees well with a two-dimensional wake assumption when U/Nh 1 but lee waves start to influence the wake structure as U/Nh increases. The dividing-streamline heights obtained in the simulation are in accordance with experimental results and Sheppard's formula. The energy loss along the dividing streamline due to friction/turbulence approximately offsets the energy gained from pressure field. When lee waves are present, linear theory always underestimates the amplitude and overestimates the wavelength of three-dimensional lee waves. The simulated variations of drag coefficients with the parameterK (=ND/ U) are qualitatively consistent with experimental data and linear theory. Here D is the depth of the tank.  相似文献   

10.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

11.
From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range –2 z/L + 2. The calculations show good agreement with observations with the exception of a range –1 z/L 0 in which the function m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.Notation a,b,c contants (see Equations (–4)) - Ci constants i=u, v, w, (see Equation (5) - kme,kmT peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively - kmi peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i= - ksb, kc characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively - L Monin-Obukhov length - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\] difference of mean temperature and mean potential temperature - T* Monin-Obukhov temperature scale - velocity of mean flow in positive x-direction - u* friction velocity - u, v, w components of velocity fluctuations - z height above ground - von Kármanán constant - temperature fluctuation - m nondimensional mean shear - H nondimensional mean temperature gradient - nondimensional rate of lolecular dissipation of turbulent kinetic energy - D nondimensional divergence of vertical transports of turbulent linetic energy  相似文献   

12.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

13.
Thermal comfort of man in different urban environments   总被引:2,自引:4,他引:2  
Summary On July 29, 1985, a hot summer day, biometeorological measurements were performed simultaneously in three different urban structures within the city of Munich and in the trunk space of a nearby tall spruce forest. Based on the results of these experiments the following thermophysiologically relevant biometeorological indices were calculated: Predicted mean vote, skin wettedness and physiologically equivalent temperature. These three indices are derived from different models for the human energy balance. They allow the assessment of the thermal components of the microclimates at the selected sites with regard to application in urban planning. The results quantitatively show the great heat stress in the urban structure street canyon, exposed to south, whereas in the trunk space of the tall spruce forest there is nearly an optimal climate even on hot summer days. Between these extremes the results for street canyon, exposed to north show a little higher heat load than for backyard with trees.
Zusammenfassung An einem heißen Sommertag, dem 29. Juli 1985, wurden in drei Stadtstrukturen in München und im Stammraum eines nahegelegenen Fichtenhochwaldes zeitgleich biometeorologische Messungen durchgeführt. Mit den Meßergebnissen wurden folgende thermophysiologisch relevante biometeorologische Indizes berechnet: Predicted mean vote, Hautbenetzungsgrad und physiologisch äquivalente Temperatur. Diese drei Indizes beruhen auf verschiedenen Modellen zur menschlichen Energiebilanz. Mit den drei Indizes wurden die thermischen Komponenten der Mikroklimate an den ausgewählten Meßplätzen im Hinblick auf Stadtplanungsaufgaben bewertet. Die Ergebnisse zeigen quantitativ die relativ große Hitzebelastung bei der Stadtstruktur Straßenschlucht, nach Süd exponiert, während im Stammraum des Fichtenhochwaldes selbst an heißen Sommertagen nahezu optimale Bedingungen herrschen. Zwischen diesen Extremen liegen die Ergebnisse für die anderen Meßplätze, wobei für Straßenschlucht, nach Nord exponiert die Wärmebelastung etwas höher als für Innenhof mit Bäumen ist.


With 6 Figures  相似文献   

14.
A liquid jet of 90 m diameter and variable length has been utilized to determine absorption rates and, hence, mass accommodation coefficients , of atmospheric trace gases. The compounds investigated are HCl (0.01), HNO3 (0.01), N2O5 (0.005), peroxyacetyl nitrate (>0.001), and HONO (0.005). It is concluded that the absorption of these trace gases by liquid atmospheric water is not significantly retarded by interfacial mass transport. The strengths and limitations of the liquid jet technique for measuring mass accommodation coefficients are explored.  相似文献   

15.
Cloud water and interstitial aerosol samples collected at Mt. Sonnblick (SBO) were analyzed for sulfate and aerosol carbon to calculate in-cloud scavenging efficiencies. Scavenging efficiencies for sulfate (SO) ranged from 0.52 to 0.99 with an average of 0.80. Aerosol carbon was scavenged less efficiently with an average value (AC) of 0.45 and minimum and maximum values of 0.14 and 0.81, respectively. Both SO and AC showed a marked, but slightly different, dependence on the liquid water content (LWC) of the cloud. At low LWC, SO increased with rising LWC until it reached a relatively constant value of 0.83 above an LWC of 0.3 g/m3. In the case of aerosol carbon, we obtained a more gradual increase of AC up to an LWC of 0.5 g/m3. At higher LWCs, _ remained relatively constant at 0.60. As the differences between SO and A varied across the LWC range observed at SBO, we assume that part of the aerosol carbon was incorporated into the cloud droplets independently from sulfate. This hypothesis is supported by size classified aerosol measurements. The differences in the size distributions of sulfate and total carbon point to a partially external mixture. Thus, the different chemical nature and the differences in the size and mixing state of the aerosol particles are the most likely candidates for the differences in the scavenging behavior.  相似文献   

16.
Plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focusis on highly-buoyant plumes that loft near or become trapped in the CBL capping inversion and resistdownward mixing. Such plumes are defined by dimensionless buoyancy fluxes F* 0.1, where F* = Fb/(U w* 2 zi), Fb is the stack buoyancy flux,U is the mean wind speed, w* is the convective velocity scale, and zi is the CBL depth. The aim is to obtain statistically-reliable mean (C) and root-mean-square (rms, c) concentration fields as a function of F* and the dimensionless distance X = w*x/(U zi), where x is the distance downstream of the source.The experiments reveal the following mainresults: (1) For 3 X 4and F* 0.1, the crosswind-integrated concentration (CWIC) fields exhibit distinctly uniform profiles below zi with a CWIC maximum aloft, in contrast to the nonuniform profiles obtained earlier by Willis and Deardorff. (2) The lateral dispersion (y) variation with X is consistent with Taylor's theory for * 0.1 and a buoyancy-enhanced dispersion, y/zi F* 1/3X2/3, forF* = 0.2 and 0.4. (3) The entrapment, the plume fraction above zi, has a mean (E) that follows a systematic variationwith X and F*, and a variability (e/E) that is broad ( 0.3 to 2) near the source but subsides to 0.25 far downstream. (4) Vertical profiles of the concentration fluctuation intensity (c/C) are uniform for z < zi and X > 1.5, but exhibit significant increases: (a) at the surface and close to the source (X 1.5), and(b) in the entrainment zone. (5) The cumulative distribution functions (CDFs) of the scaled concentration fluctuations (c/c) separate into mixed-layer and entrainment-layer CDFs for X 2, with the mixed-layer group collapsing to a single distribution independent of z.These are the first experiments to obtain all components of the lateral and vertical dispersion parameters (rms meander, relative dispersion, total dispersion) for continuous buoyant releases in a convection tank. They also are the first tank experiments to demonstrate agreement with field observations of: (1) the scaled ground-level concentration along the plume centreline, and (2) the dimensionless lateral dispersion _y/z_i of buoyant plumes.  相似文献   

17.
The study focuses on a way to parameterize the effect of subgrid scale convective motions on surface fluxes in large scale and regional models for the case of light surface winds. As previously proposed, these subgrid effects are assumed to scale with the convection intensity through the relationship: where is the mean velocity of the wind, U0 the velocity of the mean wind, w* the free convection velocity, and an empirical coefficient to be determined. Both observations and numerical simulation are presently used to determine the free convection coefficient .Large eddy simulation of a fair weather convective boundary layer case observed during TOGA-COARE is performed. Comparisons between observations and the simulation of surface properties and vertical profiles in the planetary boundary layer are presented. The simulated vertical turbulent fluxes of heat, moisture and buoyancy range well within estimates from aircraft measurements.The most important result is that the true free convection coefficient , directly estimated from simulation, leads to a value of 0.65, smaller than the ones estimated from temporal and spatial variances. Using observations and simulation, estimates of from temporal and spatial variances are obtained with similar values 0.8. From both theoretical derivations and numerical computations, it is shown that estimates of the true from variances are possible but only after applying a correction factor equal to 0.8. If this correction is not used, is overestimated by about 25%. The time and space sampling problem is also addressed in using numerical simulations.  相似文献   

18.
In the summer of 1988/89 flights were carried out in the Coorong coastal area of South Australia to investigate sea-breeze fronts. The flights yielded data sets of the structure of the fronts in the cross-frontal direction with a spatial resolution of approximately 3 m. The study is focused on the budgets of sensible and latent heat in the vicinity of the front and on frontogenesis/frontolysis processes which are closely related to budget considerations.The frontogenesis relationships and the budgets were established on a 2 km length scale by low-pass filtering of the space series. As the wind components were measured with high accuracy, all processes which determine frontogenesis could be evaluated and are displayed in x,z-cross-sections: these are the confluence, shear and diabatic effects, all of which play a role in q/x-, q/z-, /x- as well as /z-frontogenesis. A detailed analysis is given for two different states of frontal development. The presented results shed much light on the governing physical processes in the frontal region with strong emphasis on the effects of confluence-generated updrafts, on shear instabilities causing bulges and clefts in the frontal surface as well as producing the elevated frontal head, and on processes related to differential heating and moistening.  相似文献   

19.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

20.
A pair of parallel cold wires separated in either the vertical or lateral direction was used to obtain the three components x, y, z of the temperature derivative in the streamwise, lateral and vertical directions, respectively. The average absolute skewness values of x and z are nonzero and approximately equal, while the skewness of y is approximately zero. These results appear to be consistent with the presence of a large, three-dimensional organised structure in the surface layer. There is an apparent low-frequency contamination in the spectral density of y and z due mainly to small errors in estimating the sensitivity of the cold wires. The temperature derivatives were high-pass filtered, the filter being set to remove possible contributions from the large structure and to minimise low-frequency sensitivity contamination. The filtered rms ratios \~x/\~y and \~x/\~z were in the range 0.7 to 0.9, a result in qualitative agreement with that obtained in the laboratory boundary layer by Sreenivasan et al. (1977). The skewness of filtered x or z is negligible, consistent with local isotropy of small-scale temperature fluctuations and in support of the high wavenumber spectral isotropy discussed in Antonia and Chambers (1978).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号