首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A novel and readily applicable Structure-Activity Relationship (SAR) for predicting the barrier height Eb to decomposition by C-C scission of (substituted) alkoxy radicals is presented. Alkoxy radicals are pivotal intermediates in the atmospheric oxidation of (biogenic) volatile organic compounds, and their fate is therefore of crucial importance to the understanding of atmospheric VOC degradation mechanisms. The SAR is based on available theoretical energy barriers and validated against barriers derived from experimental data. The SAR is expressed solely in terms of the number(s) Ni of alkyl-, hydroxy- and/or oxo-substituents on the - and -carbons of the breaking bond: Eb(kcal/mol) =17.5 – 2.1 × N(alk) – 3.1 ×N(alk) – 8.0 × N,(OH) – 8.0 × N(O=) – 12 × N(O=). For barriers below 7 kcal/mol, an additional, second-order term accounts for the curvature. The SAR reproduces the available experimental and theoretical data within 0.5 to 1 kcal/mol. The SAR generally allows conclusive predictions as to the fate of alkoxy radicals; several examples concerning oxy radicals from prominent atmospheric VOC are presented. Specific limitations of the SAR are also discussed. Using the predicted barrier height Eb, the high-pressure rate coefficient for alkoxy decomposition k diss (298 K) can be obtained from k diss (298 K) = L ×1.8 × 1013 exp(–Eb/RT) s–1, with L the reaction path degeneracy.  相似文献   

2.
A model of a stationary planetary boundary layer is proposed based on the equation of motion with the advective term retained. The latter is modeled by means of the so-called geostrophic momentum approximation in two versions — original and modified. New expressions for the vertical velocity W at the top of the boundary layer are derived and analyzed. They underestimate W compared to the classical expression.  相似文献   

3.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

4.
Convective Profile Constants Revisited   总被引:2,自引:2,他引:0  
This paper examines the interpolation betweenBusinger–Dyer (Kansas-type) formulae,u = (1 -1 6 )-1/4 andt = (1 - 16 )-1/2, and free convection forms. Based on matching constraints, the constants, au and at, in the convective flux-gradient relations, u = (1 - au )-1/3 and t = (1 - at )-1/3, are determined. It isshown that au and at cannot be completely independent if convective forms are blended with theKansas formulae. In other words, these relationships already carryinformation about au and at. This follows because the Kansas relations cover a wide stability range (up to = - 2), which includes a lower part of the convective sublayer (about 0.1 < - < 2). Thus, there is a subrange where both Kansas and convective formulae are valid. Matching Kansas formulae and free convection relations within thesubrange 0.1 < - < 2 and independently smoothing ofthe blending function are used to determine au and at. The values au = 10 for velocity and at = 34for scalars (temperature and humidity) give a good fit. This new approacheliminates the need for additional independent model constants and yields a`smooth' blending between Kansas and free-convection profileforms in the COARE bulk algorithm.  相似文献   

5.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

6.
E- turbulence model predictions of the neutralatmospheric boundary layer (NABL) are reinvestigated to determine thecause for turbulence overpredictions found in previous applications. Analytical solutions to the coupled E and equations for the case of steady balance between transport and dissipation terms, the dominant balance just below the NABL top, are derived. It is found that analytical turbulence profiles laminarizeat a finite height only for values of closure parameter ratio c 2 /e equal toor slightly greater than one, with laminarization as z for greater . The point = 2 is additionally foundthat where analytical turbulent length scale (l) profilesmade a transition from ones ofdecreasing ( < 2) to increasing ( > 2)values with height. Numerically predicted profiles near the NABL topare consistent with analytical findings. The height-increasingvalues of l predicted throughout the NABL with standard values ofclosure parameters thus appear a consequence of 2.5(> 2), implied by these values (c 2 = 1.92, = 1.3, e = 1). Comparison of numericalpredictions with DNS data shows that turbulence overpredictions obtained with standard-valued parameters are rectifiedby resetting and e to 1.1 and 1.6, respectively, giving, with c 2 = 1.92, 1.3, and laminarization of the NABL's cappingtransport-dissipation region at a finite height.  相似文献   

7.
Analytical solutions for the Ekman layer   总被引:1,自引:0,他引:1  
The PBL equation that governs the transition from the constant-stress surface layer to the geostrophic wind in a neutrally stratified atmosphere for which the eddy viscosityK(z) is assumed to vary smoothly from the surface-layer value U *z (0.4,U *=friction velocity,z=elevation) to the geostrophic asymptoteK GU *d forzd is solved through an expansion in fd/U *1 (f=Coriolis parameter). The resulting solution is separated into Ekman's constant-K solution an inner component that reduces to the classical logarithmic form forzd and isO() relative to the Ekman component forzd. The approximationKU *d is supported by the solution of Nee and Kovasznay's phenomenological transport equation forK(z), which yieldsKU *d exp(–z/d), where is an empirical constant for which observation implies, 1. The parametersA andB in Kazanskii and Monin's similarity relation forG/U * (G=geostrophic velocity) are determined as functions of . The predicted values ofG/U * and the turning angle are in agreement with the observed values for the Leipzig wind profile. The predicted value ofB based on the assumption of asymptotically constantK is 4.5, while that based on the Nee-Kovasznay model is 5.1; these compare with the observed value of 4.7 for the Leipzig profile. A thermal wind correction, an asymptotic solution for arbitraryK(z) and 1, and an exact (unrestricted ) solution forK(z)=U *d[1–exp(–z/d)] are developed in appendices.  相似文献   

8.
Summary The interannual variations in sea surface temperature (SST) in the equatorial east Pacific, which are dominated by the El Niño phenomenon, are shown for the period 1870–1983. Since 1870 25 significant warm events have occurred. These events are classified as weak, moderate, strong and very strong, according to the normalized SST anomalies in the region 130° W–80° W, 0°–5° S.The spatial and temporal development of a composite El Niño/Southern Oscillation (ENSO) episode, based on 10 very strong or strong events, is presented in terms of SST, surface wind and divergence anomalies for the tropical Pacific (10° N–30° S). During its evolution the following phases are distinguished: Antecedent Conditions, Onset Phase, Peak Phase, Mature Phase and Dissipation Stage.Some aspects of ocean-atmosphere interaction associated with this evolution and, more specifically, the initiation of the composite event, are described. Seasonally varying feedback processes between SST, surface wind and convergence anomaly patterns in the western Pacific/Indonesian region suggest a possible mechanism for the initiation of typical ENSO events.
Zusammenfassung Die interannuären Variationen der Meeresoberflächentemperatur (SST) im äquatorialen Ostpazifik, die von dem El Niño-Phänomen dominiert werden, werden für die Periode 1870–1983 aufgezeigt. Seit 1870 traten 25 signifikante Ereignisse auf. Diese Ereignisse werden entsprechend den normierten SST-Anomalien in der Region 130° W–80° W, 0°–5° S als schwach, mittel, stark und sehr stark klassifiziert.Die räumliche und zeitliche Entwicklung einer Komposit-El Niño/Southern Oscillation (ENSO)-Episode, die auf 10 sehr starken bzw. starken Ereignissen basiert, wird anhand von SST-, Bodenwind- und Divergenzanomalien für den tropischen Pazifik (10° N–30° S) dargestellt. Während ihrer Entwicklung werden die folgenden Phasen unterschieden: Vorausgehende Bedingungen, Einsetzphase, Spitzenphase, Reifestadium und Auflösungsstadium.Einige Aspekte der Wechselbeziehungen Ozean—Atmosphäre werden im Zusammenhang mit der Entwicklung und insbesondere der Auslösung des Komposit-Ereignisses beschrieben. Jahreszeitlich variierende Rückkopplungsprozesse zwischen SST-, Bodenwind- und Konvergenzanomalien in der westpazifischen/indonesischen Region stellen einen möglichen Mechanismus für die Auslösung typischer ENSO-Ereignisse dar.


With 9 Figures  相似文献   

9.
The commonly measured value of in the relaxed eddy accumulationmethod of about 0.56is shown to arise from the non-Gaussiannature of turbulence. Fourth-orderGram–Charlier functions forthe two-dimensional probability distributionsof variation in the horizontal component of wind velocityand concentrations of water vapour, carbondioxide and methane with respect to thevertical component of wind velocity are used to examinethe value of .An analytical solution for ispresented in terms of fourth-order moments.Under mean conditions, this solution givesa value for of0.557. Variation of is shown to be controlledprimarily by the ratio of the mean ofc'w3 (where c'is relevant to the entity of interest andw' is vertical component of windvelocity) to the correlationcoefficient between the entity concentrationand vertical component of wind velocity.  相似文献   

10.
Recently Wilson and Flesch (Boundary-Layer Meteorology, 84, 411-426, 1997) suggested that the average increment d z to the orientation = arctan(w/u) of the Lagrangian velocity-fluctuation vector can be used to distinguish the better Lagrangian stochastic models within the well-mixed class. Here it is demonstrated that the specification of d z constitutes neither a sufficient or universally applicable criterion to distinguish the better Lagrangian stochastic models within the well-mixed class. The hypothesis made by Wilson and Flesch that Lagrangian stochastic models with /PE irrotational are zero-spin models, having d z=0, is proven  相似文献   

11.
The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic–Pacific moisture flux (Fa) and atmospheric moisture diffusivity (Kq). In a large ensemble of spinup experiments, the values of Fa and Kq are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of Fa and Kq, reveal the co-existence of two stable THC states (Conveyor On and Off)—i.e. a bistable regime. In further sensitivity experiments, the model is forced with small, temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux, under a collapsed Conveyor, plays a secondary role.  相似文献   

12.
Periodicity of annual precipitation in different climate regions of Croatia   总被引:1,自引:1,他引:0  
Summary The periodicity of a 100-year series of annual precipitation over Croatia has been studied by means of power spectrum analysis at 3 stations representing the different climatic regions of Croatia. The annual precipitation variance spectra in the continental lowland (Osijek) and at the north East Adriatic coast (Crikvenica) can be fitted by Markov white noise continuum, but in the transitional region between the Dinaric Alps and the Pannonian lowland (Zagreb-Gri) a non-white noise continuum is necessary. Quasi-periodic oscillations appear in two spectra ranges: short (2.2 and 4.7 years) and medium (25.0 and 33.3 years). These results are compared with those of other authors for other parts of the Europe.With 2 Figures  相似文献   

13.
Summary The performance of evaporation schemes with and approach and their combination within resistance representation of evaporation from bare soil surface is discussed. For this purpose nine schemes, based on different functions of or , on the ratio of the volumetric soil moisture content and its saturated value are used.The quality of the chosen schemes has been evaluated using the results of time integration by the coupled soil moisture and surface temperature prediction model, BARESOIL, using in situ data. A sensitivity analysis was made using two sets of data derived from the volumetric soil moisture content of the top soil layer. One with values below the wilting point (0.17 m3m–3) and the second with values above 0.20m3m–3. Data sets were obtained at the experimental site Rimski anevi, Yugoslavia, from the bare surface of a chernozem soil.With 4 Figures  相似文献   

14.
Six locations across mainland Portugal were selected for exposing Parmelia sulcata, for a one-year period (8 months for one site), with simultaneous measurement of total (dry + wet) deposition (one-month periods). The exposed lichens and the total (dry + wet) deposition were analysed for cobalt contents by INAA (instrumental neutron activation analysis) and ICP-MS (inductively coupled plasma mass spectroscopy), respectively. The designated wet deposition was evaluated through the collected water volume; the designated dry deposition was assessed after the (dried) residual mass of the wet deposition. An excellent agreement between Co contents in exposed lichens and the cumulative (1) Co contents in the dry deposition, (2) dry deposition, and (3) wet deposition has been found for the locations with alternate drought and precipitation months, high dry deposition, and high Co contents in the latter. Continuous rainfall was found to hinder the Co accumulation in the lichen due to its release from the lichen and/or lower Co contents in the dry deposition. At three locations, P. sulcata Co contents, after subtraction of the background (before exposure), equalled or exceeded the Co contents in the cumulative dry deposition at the end of the exposure time. The optimal exposure period for this species likely depends on the exposure conditions.  相似文献   

15.
Plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focusis on highly-buoyant plumes that loft near or become trapped in the CBL capping inversion and resistdownward mixing. Such plumes are defined by dimensionless buoyancy fluxes F* 0.1, where F* = Fb/(U w* 2 zi), Fb is the stack buoyancy flux,U is the mean wind speed, w* is the convective velocity scale, and zi is the CBL depth. The aim is to obtain statistically-reliable mean (C) and root-mean-square (rms, c) concentration fields as a function of F* and the dimensionless distance X = w*x/(U zi), where x is the distance downstream of the source.The experiments reveal the following mainresults: (1) For 3 X 4and F* 0.1, the crosswind-integrated concentration (CWIC) fields exhibit distinctly uniform profiles below zi with a CWIC maximum aloft, in contrast to the nonuniform profiles obtained earlier by Willis and Deardorff. (2) The lateral dispersion (y) variation with X is consistent with Taylor's theory for * 0.1 and a buoyancy-enhanced dispersion, y/zi F* 1/3X2/3, forF* = 0.2 and 0.4. (3) The entrapment, the plume fraction above zi, has a mean (E) that follows a systematic variationwith X and F*, and a variability (e/E) that is broad ( 0.3 to 2) near the source but subsides to 0.25 far downstream. (4) Vertical profiles of the concentration fluctuation intensity (c/C) are uniform for z < zi and X > 1.5, but exhibit significant increases: (a) at the surface and close to the source (X 1.5), and(b) in the entrainment zone. (5) The cumulative distribution functions (CDFs) of the scaled concentration fluctuations (c/c) separate into mixed-layer and entrainment-layer CDFs for X 2, with the mixed-layer group collapsing to a single distribution independent of z.These are the first experiments to obtain all components of the lateral and vertical dispersion parameters (rms meander, relative dispersion, total dispersion) for continuous buoyant releases in a convection tank. They also are the first tank experiments to demonstrate agreement with field observations of: (1) the scaled ground-level concentration along the plume centreline, and (2) the dimensionless lateral dispersion _y/z_i of buoyant plumes.  相似文献   

16.
Equilibrium evaporation beneath a growing convective boundary layer   总被引:1,自引:1,他引:0  
Expressions for the equilibrium surface Bowen ratio ( s ) and equilibrium evaporation are derived for a growing convective boundary layer (CBL) in terms of the Bowen ratio at the top of the mixed layer i and the entrainment parameter A R . If AR is put equal to zero, the solution for s becomes-that previously obtained for the zero entrainment or closed box model. The Priestley-Taylor parameter is also calculated and plotted in terms ofA R and i . Realistic combinations of the atmospheric parameters give values of in the range 1.1 to 1.4.  相似文献   

17.
Summary Interannual modes are described in terms of three-month running mean anomaly winds (u,v), outgoing longwave radiation (OLR), and sea surface temperature (T * ). Normal atmospheric monsoon circulations are defined by long-term average winds (u n,v n) computed every month from January to December. Daily winds are grouped into three frequency bands, i.e., 30–60 day filtered winds (u L,v L); 7–20 day filtered winds (u M,v M); and 2–6 day filtered winds (u S,v S). Three-month running mean anomaly kinetic energy (signified asK L , K M , andK S , respectively) is then introduced as a measure of interannual variation of equatorial disturbance activity. Interestingly, all of theseK L , K M , andK S perturbations propagate slowly eastward with same phase speed (0.3 ms–1) as ENSO modes. Associated with this eastward propagation is a positive (negative) correlation between interannual disturbance activity (K L , K M , K S ) and interannualu (OLR) modes. Namely, (K L , K M , K S ) becomes more pronounced than usual nearly simultaneously with the arrival of westerlyu and negativeOLR (above normal convection) perturbutions. In these disturbed areas with (K L , K M , K S >0), upper ocean mixing tends to increase, resulting in decreased sea surface temperature, i.e.T * 0. Thus, groups (not individual) of equatorial disturbances appear to play an important role in determiningT * variations on interannual time scales. HighestT * occurs about 3 months prior to the lowestOLR (convection) due primarily to radiational effects. This favors the eastward propagation of ENSO modes. The interannualT * variations are also controlled by the prevailing monsoonal zonal windsu n, as well as the zonal advection of sea surface temperature on interannual time scales. Over the central Pacific, all of the above mentioned physical processes contribute to the intensification of eastward propagating ENSO modes. Over the Indian Ocean, on the other hand, some of the physical processes become insignificant, or even compensated for by other processes. This results in less pronounced ENSO modes over the Indian Ocean.With 10 FiguresContribution No. 89-6, Department of Meteorology, University of Hawaii, Honolulu, Hawaii.  相似文献   

18.
The wind stress in the marine surface layer under unstable conditions and low wind speed has been studied using a Synthetic Aperture Radar (SAR) image of the sea surface and time series of the horizontal and vertical wind velocities and of the wind stress recorded on board the C.N.R. research platform, in the northern Adriatic Sea, during a SAR overflight.A conditional sampling technique has been used on the wind stress time series and on the SAR image to detect downward (sweep) and upward (ejection) bursts of the momentum flux, as well as the two-dimensional structure of the radar backscatter.From the ensemble average of both the wind stress and the backscatter structures, it has been possible to estimate the mean duration of the upward (11 s) and the downward (15 s) wind stress bursts and the mean size of the bright patches of the SAR image (120 m). The front of the mean backscatter structure, associated with the downward wind stress bursts, has been related to the time length of the mean sweep stress structure to get, after accounting for a threshold of the wind stress for the generation of the sea surface wavelets, the translation velocity Ut of the mean wind stress of sweep, very close to the mean wind speed. The vertical coherence of the wind stress structures has permited to refer the translation velocity to a level very close to the sea surface, but above the viscous sublayer. The variability of Ut with height has been studied through comparison with the mean wind speed at different heights z calculated by a boundary-layer model. Accounting for the results reported in the literature, there is an indication that Ut is constant with height in the range 0.5 m z 15 m.The two-dimensional pattern of the wind stress structures has been derived from the SAR image. The structures appear elongated crosswind, as with microfronts, with an average cross- to down-wind ratio of 4. The area covered by the downward wind stress structures represents 13% of the total area.  相似文献   

19.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

20.
A previously published technique for using tethered spherical balloons as anemometers for measuring light low-level winds has been further developed. Earlier data on the relationship between the aerodynamic drag coefficient and the Reynolds number of spherical rubber balloons were combined with a large number of new data and re-analysed; and the errors in the relationship were estimated. The results allowed a more accurate calculation of wind speed from the deflection of a tethered balloon from the vertical. When combined with a new technique for calculating the effects of the tether, this enabled light to moderate low-level winds at fixed heights up to 600 m or more to be measured with simple, cheap, and readily mobile equipment; and a slight modification of the technique allowed measurement of winds in and above fog. Wind speeds measured by the ballon technique showed reasonably good agreement with measurements by an anemometer carried beneath the balloon.Glossary of Symbols a, b, c Coefficients in the relationship between lnC d and lnR - A Quantity under square root in solution for lnV whena0 - C d Wind drag coefficient for balloon - C dc Value ofC d given by calibration curve of Table I - D Dynamic wind pressure force on balloon - F Buoyant free lift of balloon with load - Re Reynold's number of balloon (sphere) - R = Re/105 - r Radius of sphere - T Tension in tether - V Wind speed - 83() =(lnC dc -lnC d ) when 83° , or 0 for other - Error in lnC d - Elevation of tether where attached to balloon - Elevation of balloon from ground tether point - Molecular viscosity of air - Ratio of circumference to diameter of circle - Density of air  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号