首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 674 毫秒
1.
为克服针对一次或几次天气过程研究城市化对边界层结构及降水影响的局限性,尝试研究北京城市化对夏季大气边界层结构及降水的月平均影响,本文首先总结了2006年8月份的主要天气过程,分析了气象站观测的10 m高度风速、2 m高度气温、2 m高度比湿和24 h降水的月平均分布特征,然后利用WRF/Noah/UCM模拟系统,进行了该月30个个例的高分辨率数值模拟及检验分析,并通过多组不同城市化情景的敏感性试验对比分析了城市化对夏季大气边界层结构及降水的月平均影响.研究表明:本文所用对高分辨率数值模拟结果进行月平均的方法可以较合理地模拟出城市化对大气边界层结构及降水的影响,并再现观测到的各站风频差异.8月份,北京城市化对气温的影响高度白天约为800 m,近地面气温升高1℃以上;夜间约为200 m,对近地面气温的影响达到最大(1.4℃以上).白天,城市化使城市及下风向的一些区域风速略有减小;夜间,城市及周边区域200 m以下风速明显减小,且在100 m左右高度处风速减小最明显,减小达0.8 m/s以上.城市化白天使700 m以下比湿减小,近地面处减小达1.2g/kg以上,夜间使近地面空气比湿略有减小.城市化对城市区域平均降水量的影响随城市发展的不同阶段而不同.初步模拟分析表明, 北京城市化已使上风向区域以及城区三环以内降水量减少,海淀和昌平降水明显增加.  相似文献   

2.
利用中尺度气象数值模式(Weather Research and Forecasting Model,WRF)模拟风场,结合兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)湍流观测资料,分析了黄土高原复杂地形上稳定边界层低空急流对近地层湍流活动的影响.黄土高原复杂地形上稳定边界层低空急流的形成与地形作用引发的局地环流有关.低空急流对近地层湍流活动有强烈影响,剪切作用使小尺度湍涡活动加剧,湍动能增大,同时非平稳运动被压制.低空急流发生时,观测数据有87.3%是弱稳定情形(梯度理查森数小于0.25);而无低空急流时,对应时段的观测表明65.4%属于强稳定层结(梯度理查森数大于0.3),非平稳运动造成湍流功率谱在低频端迅速增大.与无低空急流和弱低空急流情形相比,强低空急流发生时,近地层湍动能增大1倍,湍动能在垂直方向上的传递增大1个量级,且方向向下,约为-3 × 10-3 m3·s-3,湍流在上层产生并向下传递.  相似文献   

3.
2002年6月24~25日,北京门头沟附近发生了一次大暴雨过程.观测资料和数值模拟均发现,在暴雨发生前和发生过程中,北京地区边界层内出现了一支强盛的东南风气流.东南风气流沿太行山东坡爬升,触发了对流.为探讨这支低空东南风气流的形成原因,本文通过数值模拟和敏感性试验,对这支东南风气流的形成机制进行了研究.结果表明,这支低层东南风气流是一支冷湿的、伴有较强风速辐合的气流,主要是在天气尺度系统作用下生成的.东南风气流形成过程中,地表感热加热作用对其强度有加强作用.大暴雨开始后的潜热加热作用对这支东南风气流有正反馈作用,使气流的强度大大增强,因此,在降水开始后气流强度也增强,降水最强时低空急流的强度达最强.暴雨开始后,由于夜间地表降温造成山风效应,导致在北京西部山脚下出现偏北风.  相似文献   

4.
京津冀城市群地区夏季低层大气风速谱特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用京津冀城市群地区6个观测站风廓线雷达夏季一个月同步观测资料,对其进行了风功率谱和小波分析.越接近地面,测站之间风的周期变化特征差异越明显,离地面越远,差异不显著.各站大于1天周期的频谱特征差异小,而小于1天周期的频谱特征差异大.各站频谱在几百米高度有明显日变化.不同位置的测站其日变化周期信号随高度分布表现为不同程度的地形影响效应.部分测站1km高度以下风功率谱在大于1天高频区近似满足-5/3幂分布规律.降水过程风频谱在低层普遍有小于1天的高频周期,这与降水过程高低空风速起伏和变化密切相关.各站平均风矢量日变化在5∶00—6∶00、20∶00—21∶00有明显风速变化和风向转换,1500m以下风向变化差异显著,偏南风出现时间及影响高度与该地区的山谷风和海陆风相联系.各站之间风速相关系数随高度分布呈现出低层低、上层高的特点.最后还给出了风廓线雷达布网建议.  相似文献   

5.
最近2.6 Ma中国北方季风环流与西风环流演变的风尘沉积记录   总被引:12,自引:0,他引:12  
系统的粒度测量和沉积动力学研究发现, 中国黄土由粗粒与细粒组分叠加组成, 粗粒组分主要是低空季风环流产生的粉尘沉积; 细粒组分代表主要由高空西风环流控制的背景粉尘. 不同剖面粗粒组分的变化一致表明, 低空季风环流在冰期加强, 在间冰期减弱; 细粒组分变化序列在纬向的分异特征显示, 冰期时西风环流加强、同时西风急流南移至约35°N, 间冰期西风环流减弱且急流北移至约37°N. 最近2.6 Ma洛川剖面粒度组分变化趋势表明, 西风环流对风尘沉积的贡献减小、强度减弱, 与此同步, 季风环流对风尘沉积的贡献增加、强度增大, 其中最显著的变化发生在1.2~0.9 Ma前, 可能指示了青藏高原隆升对中更新世中国北方大气环流转型的决定性作用.  相似文献   

6.
中国东部西南低空急流日变化特征及其机制   总被引:6,自引:0,他引:6       下载免费PDF全文
本文利用Final Global Data Assimilation System (FNL) 6小时再分析数据集分析了西南低空急流的日变化特征及其影响因子,结果表明:西南低空急流具有明显的日变化特征,在夜间和早晨(02LST,08LST)中国东南大部分地区急流发生频率较高,而在白天和傍晚(14LST,20LST)低空急流发生频率较低.经向地转风分量在一天内基本保持稳定,经向非地转分量在02LST最强,占实际风场强度50%以上,而在14LST和20LST,经向风场近似满足地转平衡.对风场非定常性、风速在流动方向上的非均匀性、流线弯曲和大气斜压性产生的地转偏差的分析结果表明,经向非地转风的日变化主要是由局地变压、水平风场涡度、垂直运动和温度梯度的日变化产生,副热带高压强度和位置的变化、青藏高原大地形加热效应和昼夜间海陆热力性质差异是造成经向非地转风夜间加强的重要原因.在中国东部地区,风速在流动方向的非均匀性虽然有利于非地转风的产生,但其没有明显的日变化,不是经向非地转风在夜间加强的主要原因.  相似文献   

7.
主要分析了1951~2004年夏季亚洲极涡强度和面积的长期变化趋势及其对东亚夏季环流,水汽输送和降水量的影响,发现1951~2004年,夏季亚洲极涡表现出了明显的强度减弱,面积缩小的变化趋势,并以面积缩小更为显著,这正对应于北极涛动(AO)指数在该时段的显著升高.在这种北半球中高纬大尺度环流变化的影响下,东亚夏季高空西风急流在近54年显著南移,冷空气活动的南侵程度明显增强,从而造成低空偏北风显著增强而偏南风减弱.与此相应,近54年整个中国区域内低空纬向风速呈明显的减小趋势.总的来看,东亚夏季风环流发生了明显减弱.同时,流经中国的中纬度西风水汽输送在近54年也表现出一致减弱的趋势,而南风水汽输送大致以110°E为界,以东的夏季风区呈显著的减弱趋势而以西则有明显的增加趋势.这种水汽输送的变化影响了中国不同区域内水汽输送通量散度的改变,进而使得夏季降水量发生变化.分析表明,夏季亚洲极涡的面积和强度与东北、华北和西北东部的水汽输送通量散度和夏季降水呈正相关,而与长江中下游、华南、西南、青藏高原和西北西部呈显著负相关,夏季亚洲极涡在近几十年的面积缩小和强度减弱是中国夏季降水长期变化的一个可能原因.  相似文献   

8.
影响东北初夏和盛夏降水年际变化的环流特征分析   总被引:5,自引:0,他引:5       下载免费PDF全文
东北地区是我国主要的粮食生产基地,而夏季是东北农作物的主要生长季,也是降水集中的季节,降水量的多少及其分布是影响东北地区粮食产量的重要因素之一.本文利用中国东北地区79个台站观测的月平均降水资料和ECMWF再分析资料,通过相关分析和回归分析,讨论了影响东北地区夏季5~8月降水年际变化的大尺度环流特征.结果发现:东北地区降水年际变化对应的环流异常在5,6月(初夏)和7,8月(盛夏)具有明显不同的特征;初夏降水异常以冷涡活动的影响为主,而盛夏则以东亚夏季风的影响为主.初夏,东北地区降水偏多年,东北地区西北部出现随高度向西倾斜的异常气旋性环流,东北地区冷涡活动频繁.盛夏,东北地区降水异常主要受到局地对流层高层东亚高空西风急流北移以及低层的西太平洋副热带高压西伸北进的影响.随着西太平洋副热带高压西北侧西南风异常的加强,向北输送到东北地区的水汽显著增多,东北地区盛夏降水偏多.此外,与7月份相比,8月东北降水除了受到夏季风的影响以外,还受到中高纬度东北亚阻塞高压的影响.  相似文献   

9.
北京沙尘频次的年际变化及其全球环流背景分析   总被引:15,自引:5,他引:15       下载免费PDF全文
范可  王会军 《地球物理学报》2006,49(4):1006-1006
本文采用相关和合成的分析方法,研究北京沙尘频次的年际变化及其冬、春季的全球环流背景.结果表明北京沙尘频次有年际变化的特点,并与全球范围内的环流异常相联系,特别是南、北半球的中高纬的环流异常.南半球环流异常与沙尘的联系在冬、春两季有很好的持续性和显著性,北半球中高纬环流异常与沙尘的联系冬季较春季显著.春季对流层高层的东亚西风急流增强能使低空的蒙古气旋加强和锋生,从而引起地面大风,为沙尘天气频次的增加提供动力条件.  相似文献   

10.
风生边界急流稳定性的渐近理论   总被引:3,自引:1,他引:3       下载免费PDF全文
观测表明,当冬季盛吹北风时,在南中国海西边界附近将形成一支向南的急流,在一定条件下这支急流可弯曲成波动甚至形成涡旋.本文应用等值浅水模式,采用截断模方法,分析了急流的稳定性,并给出急流上不稳定波出现的条件.分析表明只有当向南的风生急流很强很窄时,由变性的Kelvin波和风应力强迫出的地形Rossby波在长波波段耦合而出现不稳定,不稳定波在波长约200 km时向北传播的相速度约为02 m·s-1,波振幅增长到e倍所需的时间约15天.分析进一步表明,夏季向北的风生流在海洋的西边界附近是稳定的.这些结果在一定程度上解释了观测结果.  相似文献   

11.
We use two series of eight-month UHF radar observations collected during the dry and wet seasons of AMMA field campaign. The ultimate goal is to do preliminary work to know whether the lowest layers are suitable for wind energy applications. Surface wind is usually weak in West Africa, but the regular occurrence of a nocturnal low level jet (NLLJ) could provide interesting conditions for wind energy. This work is two-fold: it first aims at improving our knowledge about the NLLJ in West Africa regarding its structure and its variability during the year. Then, special attention is paid to the first 200 m agl, to study the possibility to use the sub-jet wind as a source of energy. A set of enhanced radio-soundings is taken to help to understand the dynamics and thermodynamics and to find a way to extrapolate the wind at low level, where the UHF radars do not provide data.  相似文献   

12.
Continuous MF radar measurements of mesospheric mean winds are in progress at the observatories in Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). The observations at Yamagawa and Wakkanai were started in August 1994 and September 1996, respectively. The real-time wind data are used for the study of major large scale dynamic features of the middle atmosphere such as mean winds, tides, planetary waves, and gravity waves, etc. In the present study of mean winds, we have utilized the data collected until June 1999, which include the simultaneous observation period of little more than two and a half years, for the two sites. The database permits us to draw conclusions on the characteristics of mean winds and to compare the mean wind structure over these sites. The mean prevailing zonal winds at both sites are dominated by westward/eastward motions in summer/winter seasons below 90 km. Meridional circulation at meteor heights is generally southward during most times of the year and it extends to lower mesospheric heights during summer also. The summer westward jet at Wakkanai is consistently stronger than those at Yamagawa. However, the winter eastward winds have identical strength at both locations. Meridional winds also show larger values at Wakkanai. The mean wind climatology has been examined and compared with the MU radar observations over Shigaraki (34.9°N, 136.1°E). The paper also presents the results of the comparison between the MF radar winds and the latest empirical model values (HWM93 model) proposed by Hedin et al. (1996. Journal of Atmospheric and Terrestrial Physics 58, 1421–1447). Hodograph analyses of mean winds conducted for the summer and winter seasons show interesting similarities and discrepancies.  相似文献   

13.
Intensive meteorological observations were carried out at three sites along the slope of Adélie Land, Antarctica, with the goal of documenting summertime meteorological features of the katabatic zone. Three observational sites were placed at 5 km (D10), 110 km (D47), and 210 km (D57) from the coast, and frequency distributions of meteorological parameters were obtained at each site. Some meteorological features at D47 and D57 (interior sites) were different than at D10 (the coastal site); namely, mean air temperatures averaged for the whole observational period showed more pronounced diurnal variations at the interior sites than at the coastal site. These variations could be represented by sinusoidal curves. Wind speeds also showed diurnal variations, whose extremes appeared several hours later than the temperature extremes. The prevailing wind direction for all sites was southerly, about 30° east of the fall line, with small variations in wind direction. The strength and the height of temperature inversions were examined in two different layers (0 to 50 m, 50 to 300 m) at D47. A strong, shallow inversion layer formed at night, however, completely vanished during the day. On the other hand, an upper level inversion whose strength was weak persisted. The katabatic characteristics of the surface wind found at D47 in summer could be due to this upper level temperature inversion.A contribution to I.A.G.O. (Interaction-Atmosphere-Glace-Ocean).  相似文献   

14.
Exceedance of the US Environmental Protection Agency national ambient air quality standard for PM10 (particulate matter ≤10 µm in aerodynamic diameter) within the Columbia Plateau region of the Pacific Northwest US is largely caused by wind erosion of agricultural lands managed in a winter wheat–summer fallow rotation. Land management practices, therefore, are sought that will reduce erosion and PM10 emissions during the summer fallow phase of the rotation. Horizontal soil flux and PM10 concentrations above adjacent field plots (>2 ha), with plots subject to conventional or undercutter tillage during summer fallow, were measured using creep and saltation/suspension collectors and PM10 samplers installed at various heights above the soil surface. After wheat harvest in 2004 and 2005, the plots were either disked (conventional) or undercut with wide sweeps (undercutter) the following spring and then periodically rodweeded prior to sowing wheat in late summer. Soil erosion from the fallow plots was measured during six sampling periods over two years; erosion or PM10 loss was not observed during two periods due to the presence of a crust on the soil surface. For the remaining sampling periods, total surface soil loss from conventional and undercutter tillage ranged from 3 to 40 g m–2 and 1 to 27 g m–2 while PM10 loss from conventional and undercutter tillage ranged from 0·2 to 5·0 g m–2 and 0·1 to 3·3 g m–2, respectively. Undercutter tillage resulted in a 15% to 65% reduction in soil loss and 30% to 70% reduction in PM10 loss as compared with conventional tillage at our field sites. Therefore, based on our results at two sites over two years, undercutter tillage appears to be an effective management practice to reduce dust emissions from agricultural land subject to a winter wheat–summer fallow rotation within the Columbia Plateau. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Sea breezes are characteristic features of coastal regions that can extend large distances from the coastline. Oscillations close to the inertial period are thought to account for around half the kinetic energy in the global surface ocean and play an important role in mixing. In the vicinity of 30°N/S, through a resonance between the diurnal and inertial frequencies, diurnal winds could force enhanced anti-cyclonic rotary motions that contribute to near-inertial energy.Observations of strong diurnal anti-cyclonic currents in water of depth 175 m off the Namibian coastline at 28.6°S are analysed over the annual cycle. Maxima in the diurnal anti-cyclonic current and wind stress amplitudes appear to be observed during the austral summer. Both the diurnal anti-cyclonic current and wind stress components have approximately constant phase throughout the year. These observations provide further evidence that these diurnal currents may be wind forced. Realistic General Ocean Turbulence Model (GOTM) 1-D simulations of diurnal wind forcing, including the first order coast-normal surface slope response to diurnal wind forcing, represent the principal features of the observed diurnal anti-cyclonic current but do not replicate the observed vertical diurnal current structure accurately. Cross-shelf 2-D slice simulations suggest that the first order surface slope response approximation applies away from the coast (>140 km). However, nearer to the coast, additional surface slope variations associated with spatial variations in the simulated velocity field (estimated from Bernoulli theory) appear to be significant and also result in transfer of energy to higher harmonics. Evidence from 3-D simulations at similar latitude in the northern hemisphere suggests that 3-D variations, including propagating near-inertial waves, may also need to be considered.  相似文献   

16.
The aspect sensitivity of SOUSY-VHF-radar oblique-beam echoes from the troposphere and lower stratosphere has been examined for a number of jet stream passages during the years 1990 - 1992. When the core of the jet is overhead or nearly so, vertical profiles of the aspect sensitivity display two notable features. First, the distinction between mainly isotropic and strongly aspect-sensitive echoes in the troposphere and the lower stratosphere, respectively, often reported for measurements made during calm conditions, does not necessarily prevail in the vicinity of the jet stream. Second, echoes obtained at altitudes near the height of the horizontal wind maximum are found to be more aspect sensitive for beams directed parallel to the horizontal flow or nearly so, than for other beam directions. It is demonstrated that time-averaged horizontal wind speeds estimated from the radar data, taking into account the reduced effective oblique-beam zenith angle resulting from aspect sensitivity, may exceed uncorrected wind speeds by as much as 10 m s−1 in these circumstances. Implications for wind profiling and for describing the backscattering process are discussed. Doppler spectral widths examined for one jet stream passage are found to be narrower in a beam aligned with the horizontal wind at heights near the wind speed maximum than corresponding widths measured in a beam projected at right angles to the jet. The narrowest spectra thus coincide with the most aspect-sensitive echoes, consistent with the hypothesis that such returns result from specular backscattering processes.  相似文献   

17.
In southwest Western Australia, strong and persistent sea breezes are common between September and February. We hypothesized that on the inner continental shelf, in the absence of tidal forcing, the depth, magnitude, and lag times of the current speed and direction responses to sea breezes would vary though the water column as a function of the sea breeze intensity. To test this hypothesis, field data were used from four sites were that were in water depths of up to 13 m. Sites were located on the inner continental shelf and were on the open coast and in a semi-enclosed coastal embayment. The dominant spectral peak in currents at all sites indicated that the majority of the spectral energy contained in the currents was due to forcing by sea breezes. Currents were aligned with the local orientation of the shoreline. On a daily basis, the sea breezes resulted in increased current speeds and also changed the current directions through the water column. The correlation between wind–current speeds and directions with depth, and the lag time between the onset of the sea breeze and the response of currents, were dependent on the intensity of the sea breezes. A higher correlation between wind and current speeds occurred during strong sea breezes and was associated with shorter lag times for the response of the bottom currents. The lag times were validated with estimates of the vertical eddy viscosity. Solar heating caused the water column to stratify in summer and the sea breezes overcame this stratification. Sea breezes caused the mixed layer to deepen and the intensity of the stratification was correlated to the strength of the sea breezes. Weak sea breezes of <5 m s−1 were associated with the strongest thermal stratification of the water column, up to 1°C between the surface and bottom layers (6 and 10 m below the surface). In comparison, strong sea breezes of >14 m s−1 caused only slight thermal stratification up to 0.5°C. Apart from these effects on the vertical structure of water column, the sea breezes also influenced transport and mixing in the horizontal dimension. The sea breezes in southwest Western Australia rotated in an anticlockwise direction each day and this rotation was translated into the currents. This current rotation was more prominent in surface currents and in the coastal embayment compared to the open coast.  相似文献   

18.
Quantitative estimation of the material transported by the wind under field conditions is essential for the study and control of wind erosion. A critical step of this calculation is the integration of the curve that relates the variation of the amount of the material carried by the wind with height. Several mathematical procedures have been proposed for this calculation, but results are scarce and controversial. One objective of this study was to assess the efficiency of three mathematical models (a rational, an exponential, and a simplified Gaussian function) for the calculation of the mass transport, as compared to the linear spline interpolation. Another objective of this study was to compare the mass transport calculated from field measurements obtained from a minimum of three discrete sampling heights with measurements of nine sampling heights. With this purpose, wind erosion was measured under low surface roughness conditions on an Entic Haplustoll during 25 events. The rational function was found to be mathematically limited for the estimation of wind eroded sediment mass flux. The simplified Gaussian model did not fit to the vertical mass flux profile data. Linear spline interpolation generally produced higher mass transport estimates than the exponential equation, and it proved to be a very flexible and robust method. Using different sampling arrangements and different mass flux models can produce differences of more than 45% in mass transport estimates, even under similar field conditions. Under the conditions of this study, at least three points between the soil surface and 1·5 m high, including one point as closest as possible to the surface, should be sampled in order to obtain accurate mass transport estimates. Additionally, the linear spline interpolation and the non‐linear regression using an exponential model, proved to be mathematically reliable methods for calculating the mass transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Surface wind data from a network of stations located in the Po Valley, Italy, have been analysed in order to investigate the features of the local circulation during summer, under synoptic conditions of weak pressure gradients.

The up-valley wind appears to be closely coupled with the sea-land breeze in the eastern part of the valley. The nocturnal phase winds are almost completely absent in the central part of the valley. An anomalous nocturnal circulation in the northeastern part of the valley is tentatively related to the influence of a low-level jet developing in a near plain.

Due to the differential heating of the mountain slopes and the valley floor, the flow is divergent and anticyclonic during the day and convergent and cyclonic at night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号