首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
热带气旋作为一种海上灾害性天气,对“海上丝绸之路”海上航运影响重大。本文基于西北太平洋和北印度洋1990—2017年的热带气旋路径数据,结合热带气旋风场参数模型,利用缓冲区分析、叠加分析等GIS空间分析技术,系统研究了“海上丝绸之路”主要海域、主要海区、关键通道受热带气旋影响频次以及热带气旋危险性的时空分布特征。主要结论:① “海上丝绸之路”主要海域受热带气旋影响严重,表现在热带气旋影响范围广、影响频次高,其中西北太平洋较北印度洋受热带气旋影响更为严重,危险性更大;② 西北太平洋的15°N—30°N,120°E-—145°E海域热带气旋危险性最高;③ 热带气旋危险性季节变化较为明显,秋夏两季危险性较高,冬春两季危险性较低,在夏秋两季各月份中,7、8、9、10月危险最高;④ 在各海区中,中国东部海区热带气旋危险最高,其次是南海、日本海、孟加拉湾、阿拉伯海,而红海和波斯湾不受热带气旋影响;在各关键通道中,吕宋海峡热带气旋危险性最高,其次是台湾海峡、对马海峡、宗谷海峡、鞑靼海峡、保克海峡、霍尔木兹海峡,而马六甲海峡和曼德海峡无热带气旋危险。  相似文献   

2.
A large number of autonomous profiling floats deployed in global oceans have provided abundant temperature and salinity profiles of the upper ocean. Many floats occasionally profile observations during the passage of tropical cyclones. These in-situ observations are valuable and useful in studying the ocean’s response to tropical cyclones, which are rarely observed due to harsh weather conditions. In this paper, the upper ocean response to the tropical cyclones in the northwestern Pacific during 2000–2005 is analyzed and discussed based on the data from Argo profiling floats. Results suggest that the passage of tropical cyclones caused the deepening of mixed layer depth (MLD), cooling of mixed layer temperature (MLT), and freshening of mixed layer salinity (MLS). The change in MLT is negatively correlated to wind speed. The cooling of the MLT extended for 50–150 km on the right side of the cyclone track. The change of MLS is almost symmetrical in distribution on both sides of the track, and the change of MLD is negatively correlated to pre-cyclone initial MLD.  相似文献   

3.
Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.  相似文献   

4.
A stratus-sea fog event that occurred over the Yellow and East China Seas on 3 June 2011 is investigated using observa-tions and a numerical model, with a focus on the effects of background circulation and Sea Surface Temperature Front (SSTF) on the transition of stratus into sea fog. Southerly winds of a synoptic high-pressure circulation transport water vapor to the Yellow Sea, creating conditions favorable for sea fog/stratus formation. The subsidence from the high-pressure contributes to the temperature inversion at the top of the stratus. The SSTF forces a secondary circulation within the ABL (Atmospheric Boundary Layer), the sink-ing branch of which on the cold flank of SSTF helps lower the stratus layer further to reach the sea surface. The cooling effect over the cold sea surface counteracts the adiabatic warming induced by subsidence. The secondary circulation becomes weak and the fog patches are shrunk heavily with the smoothed SSTF. A conceptual model is proposed for the transition of stratus into sea fog over the Yellow and East China Seas. Finally, the analyses suggest that sea fog frequency will probably decrease due to the weakened SSTF and the reduced subsidence of secondary circulation under global warming.  相似文献   

5.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

6.
The paper presents a numerical two-dimensional model (with a realistic sea basin and wind fields as exter nal forcing) to simulate the basic features of the wintertime circulation in the Bohai and Huanghai (Yellow) Seas (BHS) and to show how the circulation can be driven by wind. The main results can be summarized as follows (1) The basic features of the BHS wintertime circulation can be depicted by the wind-driven barotropi'c motion. (2) The traditionally named Huanghai Sea Warm Current (HSWC) is actually generated by the north wind field, at least in winter. (3) The southward coastal current off the Korean west coast plays a more significant role in the southern Huanghai Sea wintertime circulation than traditionally believed. (4) Though the coastal landform and bottom topography play important roles in the wintertime BHS circulation pattern, the wind is a primary forcing.  相似文献   

7.
利用含地形、摩擦及非绝热加热外源强迫的准地转正压涡度方程模式 ,通过构造理想的坡地地形及椭圆型岛地形 ,首先分析了孤立地形的动力抬升作用及动力抬升、摩擦、非绝热加热 3者共同作用下对热带气旋 (TC)移动的影响。发现 :地形的动力抬升、摩擦作用以及地形附近海域的非绝热加热对TC移动均有影响 ;然后 ,引入了我国东南近海的实际地形 ,通过数值试验分析了TC移经或登陆在近海不同位置时TC移向、移速的可能变化 ,并给出了近海地形对TC移向、移速影响的空间分布。  相似文献   

8.
This study investigates the wind energy input, an important source of mechanical energy, in the coastal seas east of China. Using the wind field from the high-resolution sea surface meteorology dataset in the Bohai Sea, Yellow Sea, and East China Sea, we studied the wind energy input through surface ageostrophic currents and surface waves. Using a simple analytical formula for the Ekman Spiral with timedependent wind, the wind energy input through ageostrophic currents was estimated at ~22 GW averaged from 1960 to 2007, and through use of an empirical formula, the wind energy input through surface waves was estimated at ~169 GW. We also examined the seasonal variation and long-term tendency of mechanical energy from wind stress, and found that the wind energy input to the East China Sea decreased before the 1980s, and then subsequently increased, which is contrary to what has been found for the Bohai Sea and Yellow Sea. More complicated physical processes and varying diffusivity need to be taken into account in future studies.  相似文献   

9.
山东半岛海域成矿区带划分以往研究程度较低。该文利用海域重磁资料,在研究区梳理了渤海和黄海的重磁异常特征,渤海和北黄海呈负布格重力异常,南黄海北部与之相反;渤海为正磁异常,黄海与之相反。以重磁异常为基础,基于陆域构造单元划分,对海域构造单元划分至Ⅲ级10个构造单元,海域构造单元多为陆域向海域的延伸,仅渤中坳陷和北黄海盆地为独立的海域构造单元。参照陆域成矿区带划分,以构造单元边界为界线,海域成矿区带划分至Ⅳ级6个成矿区,各成矿区特征不同,坳陷构造单元内成矿区富集油气矿产,隆起构造单元内成矿区表现为埕宁隆起富集煤矿,胶北隆起富集金、菱镁矿、煤、灰岩矿,千里隆起富集岩金、蛇纹岩、石棉、花岗石矿。  相似文献   

10.
The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of the SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.  相似文献   

11.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Niño events. The temporal mode of VEOF-2 is in good agreement with the curve of the Niño 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Niño event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Niño occurs in winter. If El Niño happens in summer, the reverse is true.  相似文献   

12.
A tangential wind profile for simulating strong tropical cyclones with MM5   总被引:5,自引:0,他引:5  
A new tangential wind profile for simulating strong tropical cyclones is put forward and planted into the NCARAFWA tropical cyclone bogussing scheme in MM5. The scheme for the new profile can make full use of the information from routine typhoon reports, including not only the maximum wind, but also the additional information of the wind speeds of 25.7 and 15.4 ms^-1 and their corresponding radii, which are usually provided for strong cyclones. Thus, the new profile can be used to describe the outer structure of cyclones more accurately than by using the earlier scheme of MM5 in which only the maximum wind speed is considered. Numerical experimental forecasts of two strong tropical cyclones are performed to examine the new profile. Results show that by using the new profile the prediction of both cyclones‘ intensity can be obviously improved, but the effects on the track prediction of the two cyclones are different. It seems that the new profile might be more suitable for strong cyclones with shifted tracks. However, the conclusion is drawn from only two typhoon cases, so more cases are needed to evaluate the new profile.  相似文献   

13.
INTRODUCTIONTraditionally,thecontinentalshelfcirculationisjudgedonthebasisofthewatersalinityandtemperaturedistribution,massanalysisandobservedcurrentvelocitybykinemometer.Limitedobservationaldatamakesitdifficulttodemonstratethecirculationmechanism.With…  相似文献   

14.
The Chinese east coastal areas and marginal seas are foggy regions.The development of effective forecasting methodsrests upon a comprehensive knowledge of the fog phenomena.This study provides new observations associated with the sea fogsover the northwestern Yellow Sea by means of L-band radar soundings with a high vertical resolution of 30 m.The monthly tem-perature lapse rate,the Richardson Numbers,and the humidity show obvious seasonal variations in the lower level of the planetaryboundary layer (PBL) that are related to the onset,peak and end of the Yellow Sea fog season.The typical pattern of stratification forthe sea fog season in the northwestern Yellow Sea is that a stable layer of about 400 m thick caps a 150 m conditionally unstable layer.Besides,the differences between fogs and stratus clouds in terms of humidity,turbulence and temperature are analyzed,which is ofsignificance for sea fog forecast and detection by satellites.The thickness of the sea fogs varies in different stages of the fog season,and is associated with the temperature inversion.The numerical simulation proves that the seasonal variations obtained by the radarwell represent the situations over the Yellow Sea.  相似文献   

15.
Various satellite data, JRA-25 (Japan reanalysis of 25 years) reanalyzed data and WRF (Weather Research Forecast) model are used to investigate the in situ effect of the ESKF (East China Sea Kuroshio Front) on the MABL (marine atmospheric boundary layer). The intensity of the ESKF is most robust from January to April in its annual cycle. The local strong surface northerly/northeasterly winds are observed right over the ESKF in January and in April and the wind speeds decrease upward in the MABL. The thermal wind effect that is derived from the baroclinic MABL forced by the strong SST gradient contributes to the strong surface winds to a large degree. The convergence zone existing along the warm flank of the ESKF is stronger in April than in January corresponding to the steeper SST (sea surface temperature) gradient. The collocations of the cloud cover maximum and precipitation maximum are basically consistent with the convergence zone of the wind field. The clouds develop higher (lower) in the warm (cold) flank of the ESKF due to the less (more) stable stratification in the MABL. The lowest clouds are observed in April on the cold flank of the ESKF and over the Yellow Sea due to the existence of the pronounced temperature inversion. The numerical experiments with smoothed SST are consistent with the results from the ovservations.  相似文献   

16.
以MM4模式为框架,研制并建立了东海近海热带气旋及天气数值预报系统,将对热带气旋的预报和一般天气的预报统一在一个模式中,并实现了业务自动化控制,自1994年台风季节起投入了业务试验和准业务的运行。结果表明:该系统对东海近海热带气旋路径、风场、降水及江淮梅雨降水具有较好的预报能力  相似文献   

17.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

18.
本文记述的渤海,黄海海底发现的原始牛角心化石(3件),根据形态特征将其定名为Bos primigenius dalianensis subsp.nov.(原始牛大连亚种)。时代屆新生代第四纪晚更新世。这是我国首次于海底发现的原始牛化石。它的发现为探讨晚更新世时期黄海、渤海古地理环境,古气候条件,海水进退,冰期与间冰期的更替,哺乳动物的演化和迁徙提供了新的资料。  相似文献   

19.
In this study,a coupled tide-surge-wave model was developed and applied to the South Yellow Sea.The coupled model simulated the evolution of storm surges and waves caused by extreme weather events,such as tropical cyclones,cold waves,extratropical cyclones coupled with a cold wave,and tropical cyclones coupled with a cold wave.The modeled surge level and significant wave height matched the measured data well.Simulation results of the typhoon with different intensities revealed that the radius to the maximum wind speed of a typhoon with 1.5 times wind speed decreased,and its influence range was farther away from the Jiangsu coastal region;moreover,the impact on surge levels was weakened.Thereafter,eight hypothetical typhoons based on Typhoon Chan-hom were designed to investigate the effects of varying typhoon tracks on the extreme value and spatial distribution of storm surges in the offshore area of Jiangsu Province.The typhoon along path 2 mainly affected the Rudong coast,and the topography of the Rudong coast was conducive to the increase in surge level.Therefore,the typhoon along path 2 induced the largest surge level,which reached up to 2.91 m in the radial sand ridge area.The maximum surge levels in the Haizhou Bay area and the middle straight coastline area reached up to 2.37 and 2.08 m,respectively.In terms of typhoons active in offshore areas,the radial sand ridge area was most likely to be threatened by typhoon-induced storm surges.  相似文献   

20.
Teng  Fei  Fang  Guohong  Xu  Xiaoqing 《中国海洋湖沼学报》2017,35(5):987-1001
A parameterized internal tide dissipation term and self-attraction and loading(SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M_2 and S_2 in the Bohai Sea, Yellow Sea and East China Sea(BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M_2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M_2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide eff ect is important in the deep water regions. Numerical experiments show that artifi cial removal of tide-generating force in the BYECS can cause a signifi cant dif ference(as much as 30 cm) in model output. Artifi cial removal of SAL tide in the BYECS can cause even greater diff erence, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号