首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this paper, a heavy sea fog event occurring over the Yellow Sea on 11 April 2004 was investigated based upon observational and modeling analyses. From the observational analyses, this sea fog event is a typical advection cooling case. Sea surface temperature(SST) and specific humidity(SH) show strong gradients from south to north, in which warm water is located in the south and consequently, moisture is larger in the south than in the north due to evaporation processes. After fog formation, evaporation process provides more moisture into the air and further contributes to fog evolution. The sea fog event was reproduced by the Regional Atmospheric Modeling System(RAMS) reasonably. The roles of important physical processes such as radiation, turbulence as well as atmospheric stratification in sea fog’s structure and its formation mechanisms were analyzed using the model results. The roles of long wave radiation cooling, turbulence as well as atmospheric stratification were analyzed based on the modeling results. It is found that the long wave radiative cooling at the fog top plays an important role in cooling down the fog layer through turbulence mixing. The fog top cooling can overpower warming from the surface. Sea fog develops upward with the aid of turbulence. The buoyancy term, i.e., the unstable layer, contributes to the generation of TKE in the fog region. However, the temperature inversion layer prevents fog from growing upward.  相似文献   

2.
Analysis on long-term change of sea surface temperature in the China Seas   总被引:4,自引:0,他引:4  
Long-term change of sea surface temperature (SST) in the China Seas from 1900 to 2006 is examined based on two different observation datasets (HadISST1 and HadSST3). Similar to the Atlantic, SST in the China Seas has been well observed dur-ing the past 107 years. A comparison between the reconstructed (HadISST1) and un-interpolated (HadSST3) datasets shows that the SST warming trends from both datasets are consistent with each other in most of the China Seas. The warming trends are stronger in winter than in summer, with a maximum rate of SST increase exceeding 2.7℃ (100 year)-1 in the East China Sea and the Taiwan Strait during winter based on HadISST1. However, the SST from both datasets experienced a sudden decrease after 1999 in the China Seas. The estimated trend from HadISST1 is stronger than that from HadSST3 in the East China Sea and the east of Taiwan Island, where the difference in the linear SST warming trends are as large as about 1℃ (100 year)-1 when using respectively HadISST1 and HadSST3 datasets. When compared to the linear winter warming trend of the land surface air temperature (1.6℃ (100 year)-1), HadSST3 shows a more reasonable trend of less than 2.1℃ (100 year)-1 than HadISST1’s trend of larger than 2.7℃ (100 year)-1 at the mouth of the Yangtze River. The results also indicate large uncertainties in the estimate of SST warming patterns.  相似文献   

3.
Sub-tidal barotropic current variations coupled with residual sea level fluctuation in the Bohai and Yellow Seas during wintertime are addressed in this study.The temporal evolution and spatial distribution of current fluctuation are investigated using moored acoustic Doppler current profiler data in a three-dimensional numerical model.It is found that a southward current followed by a northward current occurred in the northern Yellow Sea during the fluctuation,concurrent with a significant outflow followed by inflow through the Bohai Strait.The process is consistent from surface to bottom and is coupled with remarkable residual sea level fluctuation.This quasi three-day fluctuation with amplitude 0.2-0.3 m/s leads to 1 m/1.2 m drawdown in the northern Yellow and Bohai Seas,respectively,strongly influencing water exchange between those seas.Because this a prominent feature in the seas,it is necessary to evaluate its effect on fluctuation during winter in future studies,in particular,the northward current during the recovery phase of sea level in the Bohai and Yellow Seas regarding seasonal variation.  相似文献   

4.
In this study, a sea fog event which occurred on 27 March 2005 over the Yellow and Bohai Seas was investigated observationally and numerically. Almost all available observational data were used, including satellite imagery of Geostationary Operational Environmental Satellite (GOES)-9, three data sets from station observations at Dandong, Dalian and Qingdao, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and Regional Atmospheric Modeling System (RAMS) results. Synoptic conditions and fog characteristics were analyzed. The fog formed when warm,moist air was advected northwards over the cool water of the Yellow and Bohai Seas, and dissipated when a cold front brought northerly winds and cool, dry air. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling with a 6km×6km grid, initialized and validated by FNL data, was designed. A 48h modeling that started from 12 UTC 26 March 2005reproduced the main characteristics of this sea fog event. The simulated lower visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role in the fog formation.  相似文献   

5.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

6.
In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea from 2 to 5 May 2009. The evolutionary process of this event was documented by using Multifunctional Transport Satellites-1 (MTSAT-1) visible satellite imagery. The synoptic situation, sounding profiles at two selected stations were analyzed. The difference between the air temperature and sea surface temperature during the sea fog event over the entire sea region was also analyzed. In order to better understand this event, an RAMS modeling with a 15 km×15 km resolution was performed. The model successfully reproduced the main characteristics of this sea fog event. The simulated height of fog top and the area of lower atmospheric visibility derived from the RAMS modeling results showed good agreement with the sea fog area identified from the satellite imagery. Examinations of both observational data and RAMS modeling results suggested that advection cooling seemed to play an important role in the formation of this sea fog event.  相似文献   

7.
Observational evidence of the Yellow Sea warm current   总被引:1,自引:0,他引:1  
The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.  相似文献   

8.
From 28 March to 17 April, 2018, different forms of mercury(Hg) in the Yellow Sea and Bohai Sea were measured to study the influencing factors on the distribution and transformation of Hg in spring using a shared cruise. The mean concentration of dissolved gaseous mercury(DGM) in the surface water of the Yellow and Bohai Seas was(44.3 ± 43.9) pg/L, which was close to that in mid-latitude oceans and deep seas. The ratio of DGM to THg(total mercury) was lower than in the oceans and in the Yellow and Bohai Seas in summer or fall. DGM concentrations in surface water were highest in the central part of the South Yellow Sea and were higher than those in the Bohai Sea, and their spatial distributions were consistent with RHg(reactive mercury). DGM and RHg correlated positively with water temperature in surface seawater(r = 0.506, P < 0.01;r = 0.278, P < 0.05). The concentrations of both DGM and RHg in surface water were controlled by solar radiation and water temperature. Foggy weather did not benefit the production of DGM and RHg. DGM in the bottom seawater was mainly affected by Dissolved Oxygen and water temperature(r =-0.366, P < 0.01;r = 0.331, P < 0.01), produced mainly by anaerobic reactions of the bottom seawater and sediment microorganisms. The bottom DGM concentrations in the Yellow and Bohai Seas were the highest, and DGM produced in bottom seawater and sediment plays a more important role than the surface water in spring. The concentrations of DGM and RHg in the surface and bottom water in the South Yellow Sea were all higher than those in the middle layer. Vertical variations in the North Yellow Sea and the Bohai Sea were small. The production and distribution of DGM and RHg were influenced by differences of latitude and by the Yellow Sea warm current in spring.  相似文献   

9.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Nio events. The temporal mode of VEOF-2 is in good agreement with the curve of the Nio 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Nio event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Nio occurs in winter. If El Nio happens in summer, the reverse is true.  相似文献   

10.
A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom. The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system. The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event, respectively. However, the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea. Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March. The dust plume arrived in the Yellow Sea on 20 March, decreasing the particulate inorganic nitrogen in mass concentration accordingly. The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival, respectively. In contrast, when the dust plume crossed over the Yangtze Delta area, it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea, where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.  相似文献   

11.
Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature(SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang(Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT ≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.  相似文献   

12.
In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the meteorological and oceanic conditions for sea fog formation. Sea fog over the Northern Atlantic mainly occurs over middle and high latitudes. Sea fog occurrence frequency over the western region of the Northern Atlantic is higher than that over the eastern region. The season for sea fog occurrence over the Northern Atlantic is generally from April to August. When sea fogs occur, the prevailing wind direction in the study area is from southerly to southwesterly and the favorable wind speed is around 8 m s-1. It is most favorable for the formation of sea fogs when sea surface temperature(SST) is 5℃ to 15℃. When SST is higher than 25℃, it is difficult for the air to get saturated, and there is almost no report of sea fog. When sea fogs form, the difference between sea surface temperature and air temperature is mainly-1 to 3℃, and the difference of 0℃ to 2℃ is the most favorable conditions for fog formation. There are two types of sea fogs prevailing in this region: advection cooling fog and advection evaporating fog.  相似文献   

13.
Seasonality and causes of the Yellow Sea Warm Current   总被引:1,自引:0,他引:1  
To study the seasonality and causes of the Yellow Sea Warm Current (YSWC) in detail, rotated empirical orthogonal function (REOF) and extended associate pattern analysis are adopted with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH) datasets covering 1126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in the present paper. Results show that in the Yellow and East China Seas, the YSWC is a mean barotropic flow as compensation of winter-monsoon-driven surface currents, which has been directly observed. When East Asia winter monsoon weakens, so do the meridional pressure gradient of the surface seawater and the YSWC, while the transversal pressure gradient changes rather slowly that results in the YSWC left turning. In addition, there is southward mean flow compensation of summer-monsoon-driven surface currents, which actually was also directly ob-served.  相似文献   

14.
Based on high-resolution analysis to a 280-cm long sediment core obtained from the muddy area in the central Yellow Sea, we examined the provenance of muddy sediments and discussed the changing marine sedimentary environment since the middle Holocene. The results indicated that fine-grained sediments in the muddy area were mainly derived from the Huanghe(Yellow River) and Changjiang(Yangtze River) with considerable stepwise variations during the past 6.6 kyr. The Yellow Sea Warm Current was initiated at 6 kyr when the sea level was high together with the enhanced East Asian Winter Monsoon. These in combination established the framework of shelf circulation in the Yellow Sea that began to trap the river-derived fine-grained sediments. From 4.9 kyr to 2.8 kyr, both the Kushiro Current and East Asian Monsoon were significantly weakened, reducing the delivery of Changjiang sediments to the muddy area. As a result, the sediments were mainly originated from the Huanghe. From 2.8 kyr to 1.5 kyr the continuously weakened East Asian Winter Monsoon and enhanced Yellow Sea Warm Current entrapped more fine-grain sediments. Whereas the enhanced East Asian Winter Monsoon and the human caused increase in sediment load of the Huanghe since 1.5 kyr, and direct delivery of Huanghe sediments to the Yellow Sea during 1128–1855 AD might dominated the sedimentation in the study area. The stepwise variations of the sediment provenance and composition of the Central Yellow Sea muddy sediments are of importance to understanding the formation of muddy deposit in the central Yellow Sea and the associated variations of marine environment since the middle Holocene.  相似文献   

15.
The Distribution of Dissolved Aluminum in the Yellow and East China Seas   总被引:2,自引:0,他引:2  
Water samples containing dissolved aluminum were collected from the Yellow and East China Seas in October-November 2000. The average concentrations of dissolved AI in the Yellow Sea (YS) and East China Sea (ECS) were 0.042 and 0.056 μ molL^-1, respectively. The concentration of dissolved aluminum decreased gradually across the continental shelf. The lower concentrations appeared in the YS cold water center and in the bottom layer at the shelf edge of the ECS, where they were 0.016 and 0.011 μmolL^-1, respectively. The distribution of dissolved Al was controlled by physical mixing processes rather than biological uptake processes. The impact of different water masses along the PN transect was calculated based on the mass balance model. The results show that the impact of the Changjiang River was mainly concentrated on the coastal area and the top thermocline water on the ECS shelf, where the impact percentage decreased from 12.6% to 1.1% in the surface water, while the contribution of the Kuroshio water was dominant on the ECS shelf in this survey, increasing from 77.6% to 97,8% along the PN transect from the Changjiang River Estuary to the Ryukyu Islands. It is concluded that aluminum can serve as a proper tracer for studying the impact of Changjiang terrestrial matter on the ECS shelf water.  相似文献   

16.
The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.  相似文献   

17.
Wang  Yunhe  Bi  Haibo  Huang  Haijun  Liu  Yanxia  Liu  Yilin  Liang  Xi  Fu  Min  Zhang  Zehua 《中国海洋湖沼学报》2019,37(1):18-37
Arctic sea ice cover has decreased dramatically over the last three decades. This study quanti?es the sea ice concentration(SIC) trends in the Arctic Ocean over the period of 1979–2016 and analyzes their spatial and temporal variations. During each month the SIC trends are negative over the Arctic Ocean, wherein the largest(smallest) rate of decline found in September(March) is-0.48%/a(-0.10%/a).The summer(-0.42%/a) and autumn(-0.31%/a) seasons show faster decrease rates than those of winter(-0.12%/a) and spring(-0.20%/a) seasons. Regional variability is large in the annual SIC trend. The largest SIC trends are observed for the Kara(-0.60%/a) and Barents Seas(-0.54%/a), followed by the Chukchi Sea(-0.48%/a), East Siberian Sea(-0.43%/a), Laptev Sea(-0.38%/a), and Beaufort Sea(-0.36%/a). The annual SIC trend for the whole Arctic Ocean is-0.26%/a over the same period. Furthermore, the in?uences and feedbacks between the SIC and three climate indexes and three climatic parameters, including the Arctic Oscillation(AO), North Atlantic Oscillation(NAO), Dipole anomaly(DA), sea surface temperature(SST), surface air temperature(SAT), and surface wind(SW), are investigated. Statistically, sea ice provides memory for the Arctic climate system so that changes in SIC driven by the climate indices(AO, NAO and DA) can be felt during the ensuing seasons. Positive SST trends can cause greater SIC reductions, which is observed in the Greenland and Barents Seas during the autumn and winter. In contrast, the removal of sea ice(i.e., loss of the insulating layer) likely contributes to a colder sea surface(i.e., decreased SST), as is observed in northern Barents Sea. Decreasing SIC trends can lead to an in-phase enhancement of SAT, while SAT variations seem to have a lagged in?uence on SIC trends. SW plays an important role in the modulating SIC trends in two ways: by transporting moist and warm air that melts sea ice in peripheral seas(typically evident inthe Barents Sea) and by exporting sea ice out of the Arctic Ocean via passages into the Greenland and Barents Seas, including the Fram Strait, the passage between Svalbard and Franz Josef Land(S-FJL),and the passage between Franz Josef Land and Severnaya Zemlya(FJL-SZ).  相似文献   

18.
A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141st-150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.  相似文献   

19.
The paper presents a numerical two-dimensional model (with a realistic sea basin and wind fields as exter nal forcing) to simulate the basic features of the wintertime circulation in the Bohai and Huanghai (Yellow) Seas (BHS) and to show how the circulation can be driven by wind. The main results can be summarized as follows (1) The basic features of the BHS wintertime circulation can be depicted by the wind-driven barotropi'c motion. (2) The traditionally named Huanghai Sea Warm Current (HSWC) is actually generated by the north wind field, at least in winter. (3) The southward coastal current off the Korean west coast plays a more significant role in the southern Huanghai Sea wintertime circulation than traditionally believed. (4) Though the coastal landform and bottom topography play important roles in the wintertime BHS circulation pattern, the wind is a primary forcing.  相似文献   

20.
Application of the thermocline equations in the thermocline areas and the boundary layer and the asymptotic matching techniques in each boundary in order to satisfy the surface and bottom conditions yielded a theoretical 2- D solution of the vertical thermohaline circulation of the Southern Yellow Sea in summer when the quasi-statically varying seasonal thermocline (density layer) is the background density structure , the deviations from which cause the secondary vertical circulation . The results show that the thermocline can be considered as an internal boundary or a barrier to the vertical heat advection so that in the central areas of the Southern Yellow Sea or the center of the Yellow Sea Cold Water Mass(YCWM)> the downwelling in the upper layer and upwelling in the lower or bottom layer form a double cell vertical circulation . The solution is similar to Hu's conceptual model ( 1986) in the central areas of the YCWM and is consistent with observed temperature . salinity and dissolved oxygen distri  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号