首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flare source of thermal X-rays above a magnetic arch in the corona arises from the dissipation of the magnetic energy of the current sheet formed at the reconnection of magnetic-field lines. The sources of hard X-rays emitted from the footpoints of the magnetic arch are beams of electrons accelerated in field-aligned currents induced by the Hall electric field generated in the current sheet. Both the hard X-rays detected above the active region and the type III radio emission are radiated by electrons accelerated in the field-aligned currents induced by Alfven waves. The solar cosmic rays are emitted promptly at the instant of the flare. It is important that the Lorentz electric field accelerates protons along the singular magnetic X line. The relativistic protons propagate along the interplanetary magnetic field. These protons have exponential spectra, typical for acceleration occurring in current sheets. A mechanism that is relevant for the generation of delayed cosmic rays, which demonstrate significant anisotropy and a power-law spectrum with γ ∼5, is also discussed.  相似文献   

2.
New observations of solar microbursts are reported. The spectra of microbursts can contain narrow features (Δf/f ≤ 0.03). Possible mechanisms for the generation of the microburst radio emission are analyzed, focusing on mechanisms that preferentially generate ordinary waves. Together with the well-known generation of radio emission at the fundamental plasma frequency, mechanisms associated with upper-hybrid waves and resonant-transition radiation are considered. The radio emission at the upper-hybrid frequency always corresponds to ordinary waves. Ordinary waves can also dominate in resonant-transition radiation, but the presence of well-developed small-scale turbulence in the emission region is required. Possible mechanisms for the generation of this turbulence include thermal fluctuations, Langmuir turbulence, quasi-stationary structures created by plasmawaves, and ion-acoustic waves. Probable origins of the quasi-periodicity of microbursts are analyzed.  相似文献   

3.
Using literature data on approximately 400 compact radio sources detected with the Very Large Array and located in the direction of the Galactic center within 2° of the compact source Sgr A*, 69 sources whose angular sizes are determined by scattering on electron density inhomogeneities were distinguished. Fifty-five of these are extragalactic, two are supercompact HII regions, ten are sources of maser emission, and two are variable Galactic sources. The excess of the apparent angular sizes of maser sources within 2° of the Galactic center above the mean size of objects of this class in other parts of the Galaxy found in many studies cannot be explained purely by the effect of scattering of their radio emission on interstellar plasma inhomogeneities. The angular sizes of these objects are increased due to scattering only within Galactic longitudes of about 0.4° and Galactic latitudes less than 0.1°. The turbulent medium responsible for scattering of radio emission of compact sources in the immediate vicinity of the Galactic center is strongly concentrated toward the compact source Sgr A* at the Galactic center. No extragalactic sources are observed within 0.4° in longitude and 0.2° in latitude of the Galactic center, because of their low brightness due to the superstrong scattering in this region. Data on scatter broadening can be used to study the distribution of turbulent plasma near the Galactic center.  相似文献   

4.
A model is proposed to explain observational data on the scattering of radio signals, which indicate that small-scale plasma-density inhomogeneities in the region of solar-wind acceleration are strongly elongated in the radial direction, with the degree of elongation sharply decreasing at heliocentric distances of about six solar radii. The evolution of the energy spectra of the fluctuations of the magnetic field and plasma density is studied assuming that the plasma-density fluctuations are generated locally by nonlinear interactions of high-frequency Alfven waves, and that the gradients of the mean plasma parameters are smooth. The growth rates of the main nonlinear processes are estimated. The strong elongation of the inhomogeneities first arises when the Alfven waves travel through the chromosphere-corona transition layer, then survives to considerable distances from the Sun because the associated nonlinear relaxation processes are fairly slow. Estimates of the degree of elongation of the inhomogeneities and the characteristic distance for changes in the angular wave spectra are in good agreement with radio propagation data.  相似文献   

5.
The results of a study of H2O and OH maser emission in the complex region of active star formation W75 N are presented. Observations were obtained using the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) and the Nan3ay radio telescope (France). Flaring H2O maser features may be identified with maser spots associated with the sources VLA 1 and VLA 2. Themain H2O flares occurred in VLA 1. The flare emission was associated with either maser clusters having closely spaced radial velocities and sizes up to ~2 AU or individual features. The maser emission is generated in a medium where turbulence on various scales is present. Analysis of the line shapes during flare maxima does not indicate the presence of the simplest structures—homogeneous maser condensations. Strong variability of the OH maser emission was observed. Zeeman splitting of the 1665-MHz line was detected for several features of the same cluster at a radial velocity of +5.5 km/s. The mean line-of-sight magnetic field in this cluster is ~0.5 mG, directed away from the observer. Flares of the OH masers may be due to gas compression at a shock or MHD wave front.  相似文献   

6.
Results of simultaneous measurements of radiation fluxes from post-eruption arcades on the Sun at 171, 195, 284, and 304 ? (from STEREO spacecraft data) and at radio wavelengths (from the RATAN-600 radio telescope) are presented. An original probabilistic approach developed earlier by Urnov was used to determine the differential emission measure. This method requires no regularization, and the obtained results do not depend on the choice of the temperature grid. This approach has yielded the differential measure of emission at temperatures approximately from 0.3 to 15 MK. The subsequent calculation of thermal magnetobremsstrahlung in a multi-temperature model with the magnetic field decreasing with height produces a spectrum similar to that observed on RATAN-600. Thus, in many non-stationary events with modest powers, a thermal multi-temperature model is quite able to explain the emission of post-eruption arcade systems, and it is not necessary to invoke the emission of accelerated particles. The proposed model enables direct estimation of the ratio of the magnetic and gas pressures at the tops of post-eruption arcades, and determination of the conditions required for the origin of secondary nonstationary processes in the decay stage of the main flare.  相似文献   

7.
The paper formulates the standard theory for the transport of polarized radiation in the presence of resonance scattering in an atmosphere with a weak magnetic field, so that the Zeeman splitting is small compared to the Doppler line width. For an atmosphere with conservative scattering, this reduces to the Milne problem, which consists of computing a polarized radiation field in a medium with sources lying in infinitely deep layers. In the approximation of complete frequency redistribution, the problem reduces to solving a Wiener-Hopf integral equation for a (6×6)-matrix source function. Asymptotic and numerical solutions for the standard problem are obtained, including solutions for the Milne problem, for the case of a Doppler absorption profile. The line polarization profiles for the emergent flux at various angular distances from the disk center are derived, and the dependence of the limiting degree of polarization (at the line center at the disk edge) on the direction of the magnetic field is computed. For nearly conservative scattering with photon destruction probability ε?1, the limiting degree of polarization varies with ε in accordance with a simple empirical law similar to that found earlier for a medium with zero magnetic field.  相似文献   

8.
New data for the energy and location of the hard-emission centers of a solar flare agree with an electrodynamic model of a solar flare based on the idea of the accumulation of free magnetic energy in the field of a current sheet. Three-dimensional MHD simulations are used to show that the energy stored in the preflare magnetic field of the current sheet is sufficient for the development of a flare and a coronal mass ejection. The flare and coronal mass ejection result from the explosive decay of the current sheet. The position of the brightness-temperature maximum of the radio emission during the flare coincides with the maximum of the current in the current sheet. The exponential spectrum of relativistic protons generated during the flare is consistent with acceleration by the electric field during the current-sheet decay.  相似文献   

9.
Two solar radio bursts exhibiting narrow-band millisecond pulsations in intensity and polarization are analyzed. There were considerable time delays between the left-and right-circularly polarized components of the radio emission. The observed oscillations of the degree of polarization are due to the different group velocities of the ordinary and extraordinary modes in their propagation from the source to the observer; the frequency dependence of the delay is in excellent agreement with the theoretically calculated group delay in a magnetoactive plasma. It unambiguously follows that the pulsed radio emission is generated near the double upper hybrid frequency by the nonlinear plasma mechanism, since the source emission has a low degree of polarization. In addition to dispersion effects, a Fourier analysis also reveals effects associated with the source inhomogeneity. We detected a frequency drift of pulsations (autodelays) with different signs for different polarization components. This drift suggests that, apart from the dispersion effects, there are also the effects related to inhomogeneity of the radio source. It is shown, in particular, that the upper hybrid modes (generating the radio emission) are unstable in regions with enhanced gradients of the plasma density and/or magnetic field.  相似文献   

10.
The effects of the modulation of radio waves during their passage through turbulent interstellar plasma on measurements of the structure of radio sources made with ultrahigh angular resolution using space radio interferometers are considered. Typical scattering angles?scat, pl for an extragalactic radio source at various wavelengths are estimated from scattering observations for pulsars and extragalactic sources. The (?0λ) plane, where ?0 is the source size and λ is the wavelength of the radio emission, can be divided into five regions, in which different regimes of radio-wave modulation and image reconstruction are realized. Possibilities for image reconstruction in each of these regions are investigated.  相似文献   

11.
A joint analysis of several recent solar type IV radio outbursts with zebra structures and fiber bursts in their dynamical radio spectra is carried out using all available ground-based and satellite data (Yohkoh, SOHO, TRACE). Zebra structures and fiber bursts were observed at frequencies from 20 to 6500 MHz. The main relative spectral parameters and degree of circular polarization of the zebra structures and fiber bursts are nearly the same. The relative width of the zebra structures varies only slightly with frequency (≈0.003–0.005); the radio emission is radiated in the ordinary mode. New data on centimeter-wavelength zebra structures and fiber bursts testifies that they are analogous to similar structures observed at meter wavelengths. A double-plasma-resonance model for the zebra structures based on the observational dependences for the electron density and magnetic field yields a frequency dependence for the frequency separation between stripes that does not agree with the observations. Fine structure was observed together with the rise into the corona of new, hot magnetic loops, in which instabilities associated with high-frequency and low-frequency plasma waves develop. The frequency range of the fine structure in the dynamical spectra is probably determined by the extent of these new loops in the corona. The continuous transition of the fiber bursts into zebra structures and vice versa testifies to a single origin for these two structures. All the main properties of the stripes in emission and absorption can be explained if they are associated with interactions between electrostatic plasma waves and whistlers. It is possible to obtain realistic values for the magnetic-field strength of B≈160 G at a plasma level of about 3 GHz in this model.  相似文献   

12.
We consider the influence of a non-dipolar magnetic field on the gamma-ray emission from the polar regions of a radio pulsar. The pulsar is treated in a Goldreich-Julian model with a free flow of charge from the surface of the neutron star. When finding the intensity of the gamma-ray radiation of the pulsar tube, both curvature gamma-ray radiation from the primary electrons and non-resonance inverse Compton scattering of thermal photons from the polar cap on primary electrons are taken into account. When finding the height of the upper plate of the pulsar diode, we included only positrons created by the curvature radiation of primary electrons. We assumed that the polar cap is heated by the return positron current. The influence on the gamma-ray emission of variations in both the radius of curvature of the magnetic force lines and in the electric field due to the non-dipolarity of the magnetic field were taken into account. The presence of even weak non-dipolarity of the magnetic field leads to a sharp decrease in the intensity of the gamma-ray emission from the pulsar tube at energies 1–100 MeV, while the intensity of the inverse Compton radiation (at energies 1–100 GeV) varies only relatively weakly.  相似文献   

13.
The simulation of the passage from the lithosphere through the atmosphere to the ionosphere of acoustic waves produced by seismic eruption or explosion shows that there is an acoustic coupling among these layers. This in turn is the cause of change in the transparency of the ionosphere for cosmic radio waves. Underground displacements produce Very Low (VLF) and Extremely Low Frequency (ELF) acoustic waves. In their passage through the lithosphere, the VLF wave is subject to nonlinearity that leads to frequency down-conversion, namely, increasing the ELF acoustic component at the Earth's surface. In turn, the nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to the emergence of ultra low frequency (ULF) acoustic waves in the ionosphere. An ultra low frequency acoustic wave (ULF) brings influence into the density of F-layer of the ionosphere and causes the transparency change of the ionosphere for cosmic radio waves.  相似文献   

14.
Data on the visible angular sizes of sources of microwave subsecond pulses (MSPs) obtained using the Siberian Solar Radio Telescope are analyzed assuming a dominant role for scattering on small-scale electron-density inhomogeneities in the solar corona. The observed dependence of the angular sizes of MSPs on the distance from the solar-disk center confirms that the MSP sources are localized in low layers of the solar corona. Both absolute and fractional levels of small-scale electron-density fluctuations have been estimated. These estimates suggest that flicker-noise-type turbulence power spectra are formed in the lower corona, and are preserved in the solar-wind acceleration region. A composite dependence of the scattering angle of a sounding radio wave on distance from the Sun is presented.  相似文献   

15.
Radio and optical data are used to analyze the development of the flare in the blazar 3C 454.3 observed in 2004–2007. A detailed correspondance between the optical and radio flares is established, with a time delay that depends on the observing frequency. The variation of the delay of the radio flare relative to the optical flare is opposite to the dispersion delay expected for the propagation of radiation in the interstellar medium, testifying to an intrinsic origin for the observed outburst. Small-scale flux variations on time intervals of 5–10 days in the millimeter and optical are also correlated, with a time delay of about ten months. This may provide evidence for a single source generating the radiation at all wavelengths. Rapid flux fluctuations in the radio and optical that are correlated with the indicated time delays could be associated with inhomogeneities in the accretion disk. Detailed studies of the flux variations of Active Galactic Nuclei (AGN) can be used to analyze the structure of the accretion disk. A model for the energy release in AGN that is not associated purely with accretion onto supermassive black holes is proposed. As is the case for other active members of the AGN family, estimates of the lifetime of the binary black-hole system in 3C 454.3 suggest that this object is in a stage of its evolution that is fairly close to the coalescence of its black holes. The energy that is released as the companion of the central black hole loses orbital angular momentum is sufficient to explain the observed AGN phenomena. The source of primary energy release could be heating of the gas behind shock fronts that arise due to the friction between the companion black hole and the ambient gaseous medium. The orbit of the companion could be located at the periphery of the accretion disk of the central body at its apocenter and plunge more deeply into the accretion disk at its pericenter, inducing flares at all wavelengths. Energy-release parameters such as the temperature and density of the heated gas are estimated for 3C 454.3. The model considered assumes omnidirectional radiation of the medium in the presence of a magnetic field. The radiation corresponding to the minimum flux level (base level) could represent omnidirectional radiation due to the orbit of the moving companion. The fraction of the energy that is transferred to directed jets is small, comprising 1–2% of the total energy released due to the loss of orbital angular momentum by the companion.  相似文献   

16.
Data from the Nobeyama Radioheliograph at 17 GHz with high spatial and temporal resolution are used to detect quasi-periodic pulsations with periods from 55 to 250 s in the thermal component of the microwave emission of a solar flare loop observed on June 2, 2007. Observed pulsations with periods of about 110–120 s are co-phased along the entire loop axis. The observed periodicity is most likely due to modulation of the radio emission by slow magnetoacoustic waves trapped in the filamentary flare loop.  相似文献   

17.
A method for estimating the magnetic-field strengths and angular sizes of radio sources displaying synchrotron self-absorption based on their observed radio spectra is considered. The method is used to derive the angular sizes of compact radio sources (components) and the magnetic fields in these regions, as well as the energy and number of relativistic electrons and the radiative power of a number of quasars and radio galaxies.  相似文献   

18.
Spectra of solar-flare active regions displaying peculiarities in their polarized radio emission observed on the RATAN-600 radio telescope at 2–16 GHz are considered. An appreciable dip of the circularly polarized emission (Stokes parameter V) in the middle of the microwave range (6–12 GHz), sometimes with a reversal of the sign of the polarization, is unusual. In some cases, the ordinary emission also dominates at long microwave wavelengths. Expected peculiarities of the frequency structure of microwave sources are calculated in simple models with loops in the form of hot and cool tori. Numerical calculations of these spectra show that the above features of the polarized emission can be explained by the presence of a hot region in the solar corona. It is shown that the parameters of the spectrum of the polarized emission can be used to determine the magnetic field in this hot region and the product of the relative magnetic-field gradient and the loop thickness.  相似文献   

19.
We investigate the nature of bright radio sources with known radio spectra in the direction of the nearby cluster of galaxies A569 (z=0.0193). The optical identifications of the sources show that 45% of these radio sources are associated with compact galaxies. A substantial fraction of these galaxies have active nuclei, with the radio emission concentrated toward the galactic center. Some of the cluster galaxies have radio halos, with appreciably weaker radio powers and spectral indices α=0.95±0.2. We compute the magnetic fields in the nuclei and halos of the galaxies for the adopted distance to A569. As expected, the magnetic fields in the galactic halos make a smooth transition to the intergalactic field, while the magnetic fields in the central regions of the galaxies rise sharply toward the nucleus.  相似文献   

20.
The X-ray emission of the kiloparsec-scale jets of core-dominant quasars is usually interpreted as inverse Compton scattering on the cosmic microwave background (CMB) emission (Sample I). By analogy with the situation on parsec scales, ultrarelativistic motion along a jet oriented at a small angle to the line of sight is usually invoked to explain the X-ray emission while also satisfying the condition of equipartition between the energies associated with the relativistic particles and the magnetic field on kiloparsec scales. This leads to an increase in the energy flux of the CMB radiation in the rest frame of the kiloparsec-scale jets. Consequently, the intensity of the CMB radiation is enhanced to the level required for detectable X-ray emission. This suggests that kiloparsec jets of quasars with similar extents and radio flux densities that are not detected in the X-ray (Sample II) could have subrelativistic speeds and larger angles to the line of sight, due to deceleration and bending of the jet between parsec and kiloparsec scales. This suggests the possible presence of differences in the distributions of the difference between the position angle for the parsec-scale and kiloparsec-scale jets for these two groups of quasars; this is not confirmed by a statistical analysis of the data for Samples I and II. It is deduced that most of the sources considered exhibit bending of their jets by less than about 1.5 times the angle of the parsec-scale jet to the line of sight. This suggests that the X-ray emission is generated by other mechanisms that there is no equipartition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号