首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
At Rodalquilar gold mineralization is found in Late Tertiary volcanic rocks of the Sierra del Cabo de Gata and is related to a caldera collapse. Radial and concentric faults were preferred sites for gold deposition. Hydrothermal activity produced a specific alteration zoning around gold-bearing vein structures, grading from an innermost advanced argillic via an argillic into a more regionally developed propylitic zone. Advanced argillic alteration with silica, pyrophyllite, alunite, and kaolinite extends down to several hundred m indicating a hypogene origin. High-grade gold mineralization in vein structures is confined to the near-surface part of the advanced argillic alteration. Fine-grained gold is associated with hematite, jarosite, limonite, or silica. At a depth of about 120 m, the oxidic ore assemblage grades into sulfide mineralization with pyrite and minor chalcopyrite, covellite, bornite, enargite, and tennantite. Two types of fluids from different sources were involved in the hydrothermal system. Overpressured and hypersaline fluids of presumably magmatic origin initiated the hydrothermal system. Subsequent hydrothermal processes were characterized by the influx of low-salinity solutions of probable marine origin and by interactions between both fluids. Deep-reaching, advanced argillic alteration formed from high-salinity fluids with 20–30 equiv. wt% NaCl at about 225°C. Near-surface gold precipitation and silification are related to fluids with temperatures of about 175°C and 3–4 equiv. wt% NaCl. Gold was transported as Au(HS) 2 , and precipitation resulted from boiling with a concomitant decrease in temperature, pressure, and pH and an increase in fO2. All features of the Rodalquilar gold deposit reveal a close relationship to acid-sulfate-type epithermal gold mineralization.  相似文献   

2.
Gold-bearing quartz veins fill late-Alpine brittle structures in Pennine nappes of Austria (in the Tauern window) and in northern Italy. The veins formed in the latter stages of uplift of the Alps. Fluid inclusions in veins sampled from Böckstein, Austria, and Valle Anzasca, Italy have a wide variety of compositions, ranging from aqueous brine (about 5 wt% NaCl equiv.) to about 50 mol% CO2. At room temperature, the inclusions range with increasing CO2 content from two-phase aqueous, through three-phase in which the CO2 homogenizes to vapour, to three-phase with CO2 homogenizing to liquid. This wide range of inclusion compositions is interpreted as evidence for fluid immiscibility, with most inclusions being accidental mixtures of the two end-member immiscible fluids. The homogenization temperatures of the aqueous inclusions, 200–280°C, gives the best estimate of temperature of formation of the veins. Vein formation fluid pressure at Böckstein and Valle Anzasca was about 1 kbar, and Böckstein veins formed at lower pressure than Valle Anzasca veins. Fluid immiscibility may have contributed to deposition of gold at both Valle Anzasca and Böckstein, and possibly many other uplift-related Alpine gold localities.  相似文献   

3.
Mineralogical studies demonstrate that the Hercynian polymetallic antimony-rich deposit of Bournac can be described by four stages of ore deposition and one of partial ore remobilization. Fluid inclusion data permit calculation of the composition and temperature of the fluids associated with each stage of hydrothermal mineralization and concomitant wall-rock alteration. Stages I and II (Fe-As and Zn) are represented by moderate-salinity H2O-CO2-(NaCl) inclusions which correlate closely with early carbonate deposition. Stage III fluids which are responsible for the deposition of Pb-Sb ores are characterized by low-salinity H2O-(NaCl) inclusions. During the final stage of mineralization (IV), corresponding to the main phase of stibnite deposition, abundant aqueous inclusions confirm the continued involvement of low-salinity fluids and the intense development of potassic clays and secondary silica in the wall rocks. Homogenization temperatures suggest that the whole cycle of mineralization took place during a gradual decrease in fluid temperature of 380°–140°C. Stibnite deposition is restricted to the interval of 230°–140°C thus confirming an essentially epithermal environment. Stage V (partial remobilization) is distinguished by the presence of high-salinity CaCl2-rich inclusions which are tentatively related to Triassic barite mineralization in the region and therefore postdate the Bournac antimony ores. Homogenization temperatures for this stage range 140°–60°C.  相似文献   

4.
The Xihuashan tungsten deposit, Jiangxi province, China, is a world-class vein-type ore deposit hosted in Cambrian strata and Mesozoic granitic intrusions. There are two major sets of subparallel ore-bearing quartz veins. The ore mineral assemblage includes wolframite and molybdenite, with minor amounts of arsenopyrite, chalcopyrite, and pyrite. There are only two-phase aqueous-rich inclusions in wolframite but at least three major types of inclusions in quartz: two- or three-phase CO2-rich inclusions, two-phase pure CO2 inclusions and two-phase aqueous inclusions, indicating boiling. Fluid inclusions in wolframite have relatively higher homogenization temperatures and salinities (239–380°C, 3.8–13.7 wt.% NaCl equiv) compared with those in quartz (177–329°C, 0.9–8.1 wt.% NaCl equiv). These distinct differences suggest that those conventional microthermometric data from quartz are not adequate to explain the ore formation process. Enthalpy–salinity plot shows a linear relationship, implying mixing of different sources of fluids. Although boiling occurred during vein-type mineralization, it seems negligible for wolframite deposition. Mixing is the dominant mechanism of wolframite precipitation in Xihuashan. δ34S values of the sulfides range from −1.6 to +0.1‰, indicative of a magmatic source of sulfur. δ18O values of wolframite are relatively homogeneous, ranging from +4.8‰ to +6.3‰. Oxygen isotope modeling of boiling and mixing processes also indicates that mixing of two different fluids was an important mechanism in the precipitation of wolframite.  相似文献   

5.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

6.
Mineralized veins at Major's Creek consist of preponderant quartz and carbonate gangue with gold, Au-Ag tellurides and base metal sulphides within silicified and sericitized dykes or granodiorite of the Braidwood Granite. Fluid inclusion studies indicate deposition throughout the range 350–80°C by low salinity fluids. Significant Au-Ag telluride mineralization took place at a temperature of about 155°C. Mineral deposition was due to the separation of a liquid CO2 phase from an originally CO2-rich aqueous fluid. Observed argillic alteration is a consequence of acid leaching above the boiling zone. Mineralization is epithermal in character and probably formed during the existence of a hydrothermal convective system. A relationship with similar epithermal gold deposits in the adjacent Eden-Yalwal Rift zone is inferred.  相似文献   

7.
Many of the zinc-lead deposits of NE Washington State are poorly known examples of Mississippi Valley Type (MVT) mineralization. This study compares inclusion fluids from the Josephine Breccia ores with the later cross-cutting sulfide-bearing quartz veins. The breccia ores are cemented mainly by open space fillings of dolomite, sphalerite, quartz, galena, jasperoid and calcite. Replacement is of minor importance. Ore and gangue deposition occurred over the range 150–250 °C with most of the temperatures less than 200 °C. The aqueous brines typically contain 17–23 equivalent weight percent NaCl with often substantial amounts of Ca and/or Mg chlorides. Homogenization temperatures do not delineate any cooling or paragenetic sequence. The cross-cutting vein quartz contains CO2-rich inclusions with overall densities usually less than 0.7 g/cc and homogenization temperatures from 250–325 °C. Sulfur isotope analyses yield two populations with the quartz vein ores being lighter (<13 permil CDT) than the average for the conformable ores. The later veins are not remobilized MVT sulfides but represent a separate, high-silver period of mineralization.  相似文献   

8.
A prominent set of veins was formed during post-metamorphic deformation of the Caledonian Dalradian metamorphic belt. These veins are concentrated in dilational zones in fold hinges, but apophyses follow schistosity and fold axial surface fractures. The veins are most common in the cores of regional structures, especially the Dalradian Downbend and consist of quartz, calcite, chlorite and metallic sulphides and oxides. Metals, including gold, have been concentrated in the veins. The fluid which formed the veins was low salinity (1–5 wt% NaCl and KCl) CO2-bearing (3–16 wt% CO2) water of metamorphic origin. The fluid varies slightly in composition within and between samples, but is essentially uniform in composition over several hundred km2. Vein formation occurred at about 350±50 °C and 200–300 MPa pressure. Further quartz mineralization occurred in some dilational zones at lower temperatures (160–180 °C). This later mineralization was accompanied by CO2 immiscibility. Dilution and oxidation of the metamorphic fluid occurred due to mixing with meteoric water as the rocks passed through the brittle-ductile transition. A similar metamorphic fluid is thought to have been responsible for gold mineralization in the nearby Tyndrum Fault at a later stage in the Dalradian uplift.  相似文献   

9.
Scheelite-bearing calc-silicate gneisses (CSG) oceur in the Montagne Noire within a series of dominant micaschists. Detailed petrographical and mineralogical studies reveal three successive stages of metamorphism and hydrothermal alteration: (1) stage 1, a regional metamorphism at 550°C and 4.5 kb where no mineralization is formed; (2) stage 2a, a hydrothermal alteration at 500 to 450°C and 4 to 3 kb which is characterized by an intense sericitization of feldpars and deposition of Sn in Sn-bearing cale-silicates; and (3) stage 2b, a hydrothermal alteration characterized by the crystallization of idocrasegrossular in CSG with concomittant precipitation of scheelite. Tungsten was transported through the micaschist environment and deposited as scheelite only in the CSG of stage 2b at relatively low pressures. To characterize the mechanism of tungsten transport, tungsten speciation at high P-T and scheelite solubility in aqueous solations buffered by the CSG and by the micaschists assemblages were calculated. It was found that H2WO 0 4 , HWO - 4 and WO 2- 4 are the dominant tungsten aqueous species in H2O–NaCl (one molal) solutions at 500°C and 2–4 kb. Calculations also indicate that scheelite deposition is controlled by decreasing pressure and increasing activity of aqueous calcium in this system. This is consistent with the petrographical and mineralogical observations. The consequences of the presence of volatiles (N2, CH4, CO2) in the regional fluids were examined by determining the effect of N2 on tungsten speciation and scheelite solubility. The addition of N2 (up to 10 mol%) to the mineralizing fluids results in a marked increase in H2WO 0 4 and HWO - 4 concentrations relative to WO 2- 4 and in a large decrease of scheelite solubility. This mechanism favours scheelite precipitation and accounts for the commonly observed association of W (and Sn) deposits with graphitic series generating mixed volatiles fluids.  相似文献   

10.
The Proterozoic Pahtohavare Cu-Au deposit is located in the greenstone belt near Kiruna, northern Sweden. The greenstone consists of mafic volcanic rocks with pillow lavas, mafic sills and albitized rocks, including tuffites, black schists and mafic sills, together with carbonates and mineralized zones. Mineralization occurs as impregnations, epigenetic quartz-rich breccias and fracture fillings with pyrite, chalcopyrite, pyrrhotite and gold in a complex tectonic environment. Fluid inclusions indicate an early formation of quartz and pyrite at temperatures initially near 500°C and a pressure of 2–2.4 kbar from a supersaturated aqueous solution of magmatic origin. In addition to halite cubes, daughter minerals of sylvite, calcite, hematite, graphite and two unknown phases are found. The main stage of chalcopyrite and gold deposition is characterized by aqueous fluids of variable salinity (up to 30 eq. wt.% NaCl including CaCl2), at temperatures below 350°C and pressures between 1 and 2 kbar. A minor CO2 phase with some N, accompanies this stage. Gold was transported as a chloride complex which destabilized due to an increase in pH (as a consequence of the CO2 loss) as well as cooling and dilution of the solution. The ore deposition occurred as a result of mixing with a low salinity aqueous solution during tectonic fracturing with pressure fluctuations and CO2 unmixing. Late oxidation of ores was caused by low to moderately saline (3 to 13 eq. wt.% NaCl) low temperature aqueous solutions.  相似文献   

11.
We analyzed 85 fluid inclusions from seven samples from the porphyry Cu–Mo deposit in Butte, MT, using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The Butte deposit formed at unusually great depth relative to most porphyry deposits, and fluid inclusions in deep veins trapped a low-salinity, CO2-bearing, magmatically derived, supercritical fluid as a single aqueous phase. This fluid is interpreted to be the parent fluid that cooled, decompressed, unmixed, and reacted with wall rock to form the gigantic porphyry Cu deposit at Butte. Few previous analyses of such fluids exist.Low-salinity, aqueous fluids from the earliest veins at Butte are trapped in deep veins with biotite-rich alteration envelopes (EDM veins). These veins, and the Butte quartz monzonite surrounding them, host much of the Butte porphyry Cu mineralization. Twenty fluid inclusions in one EDM quartz vein are dominated by Na, K, Fe (from 0.1 to 1 wt.%) and contain up to 1.3 wt.% Cu. These inclusions contain only small amounts (tens of ppm) of Pb, Zn, and Mn, and typically contain Li, B, Ca, As, Mo, Ag, Sn, Sb, Ba, and W in less than detectable quantities. The abundance of Cu in early fluids indicates that a low-salinity, Cu-rich, aqueous ore fluid can be directly produced by aqueous fluid separation from a granitic magma. Similar inclusions (eight) in an early deep quartz–molybdenite vein with a K-feldspar selvage have similar compositions but contain significantly less Cu than most inclusions in the biotite-altered vein. Analyzed inclusions in both veins contain less than detectable concentrations of Mo even though one is molybdenite-bearing.Low-salinity, CO2-bearing aqueous fluids are also trapped in pyrite–quartz veins with sericitic selvages. These veins cut both of the above vein types and contain inclusions that were trapped at lower pressure and temperature. Thirty-nine inclusions in two such veins have compositions similar to early fluids, but are enriched by up to a factor of 10 in Mn, Pb, and Zn relative to early fluids, and are slightly depleted in Fe. Many of these inclusions contain as much or more Cu than early fluids, although little chalcopyrite is found in or around pyrite–quartz veins.Eighteen halite-bearing inclusions from three veins from both chalcopyrite-bearing and barren veins with both K-silicate and sericitic selvages were analyzed as well. Halite-saturated inclusions are dominated by Na, K, Fe, and in some inclusions Ca. Whereas these inclusions are significantly enriched in Ca, Mn, Fe, Zn, and Pb, fluids in all three veins contain significantly less Cu than early, high temperature, low-salinity inclusions.Analyses of all inclusion types show that whereas bulk-salinity of the hydrothermal fluid must be largely controlled by the magma, fluid–rock interactions have a significant role in controlling fluid compositions and metal ratios. Cu concentrations range over an order of magnitude, more than any other element, in all four samples containing low-salinity inclusions. We infer that variations are the result of fluid trapping after different amounts of fluid–rock reaction and chalcopyrite precipitation. Enrichment, relative to early fluids, of Mn, Pb, and Zn in fluids related to sericitic alteration is also likely the result of fluid–rock reaction, whereby these elements are released from biotite and feldspars as they alter to sericite. In halite-bearing inclusions, concentrations of Sr, Ca, Pb, and Ba are elevated in inclusions from the pyrite–quartz vein with sericitic alteration relative to halite-bearing inclusions from unaltered and potassically altered samples. Such enrichment is likely caused by the breakdown of plagioclase and K-feldspar in the alteration envelope, releasing Sr, Ca, Pb, and Ba.  相似文献   

12.
The pressure, temperature and composition of ore fluids that resulted in gold deposition in the Archean, greenstone-hosted Hutti deposit have been studied using fluid inclusions and the compositions of arsenopyrite and chlorite. Five types of fluids have been identified in fluid inclusions in quartz veins associated with mineralization. They are (1) monophase CO 2-rich fluid; (2) low-salinity (0 to 14 wt% NaCl equivalent) and high-salinity (16 to 23 wt% NaCl equiv.) aqueous fluids; (3) high-salinity (28 to 40 wt% NaCl equiv.), polyphase aqueous fluids; (4) CO 2–H 2O–NaCl fluids of low salinity (0–8 wt% NaCl equiv.); and (5) a few carbonic inclusions with halite±nahcolite. The diversity of entrapped fluid composition is explained in terms of changes in fluid pressure and temperature which affect a more or less uniform supply of primary low-salinity CO 2–H 2O–NaCl fluid to the shear zone. Geothermobarometric studies indicate that during mineralization temperature ranged between 360 and 240 °C, and fluid pressure between 3,600 and 1,600 bar. The data are interpreted in terms of the cyclic fault-valve mechanism for active shear zones. Deposition of gold and sulfides has been studied on the basis of constraints from the composition of wall-rock chlorite, ore-mineral assemblages, and textural features. Tubular channels, 20 to 100 µm wide and up to 500 µm long that arise from fractures and C-planes in sheared quartz veins are reported for the first time. The channels have pyrrhotite, arsenopyrite, pyrite and gold at their distal ends, with calcite filling up the remaining part. These channels form in response to increases in T and P, by dissolution of quartz grains, guided by dislocations in them. At the PT conditions of interest, gold and sulfide deposition takes place in the shears and fractures of quartz veins from CO 2–H 2O–NaCl ore fluid of low salinity and pH due to changes in phase compositions that occur during the process of shear failure of the enclosing rocks. In the wall rock where pH is buffered, gold deposition takes place from the predominant Au(HS) 2 - species with progressive sulfide deposition and decrease in SS, from 0.01 to 0.001 mol/kg as T falls from 360 to 240 °C.  相似文献   

13.
Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H2O, H2O−CO2 and CO2 inclusions. H2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to 200°C and 175 to 250°C, respectively. The salinity of aqueous inclusions, based on ice melting, varies between 6.1 and 8 equiv. wt% NaCl. On the other hand, H2O−CO2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325°C, and their salinity, based on clathrate melting, ranges between 0.8 and 3.8 equiv. wt% NaCl. CO2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from 0.52 to 0.66 g/cm3. The partial mixing of H2O−CO2 and salt H2O−NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.  相似文献   

14.
The solubility of molybdenum (Mo) was determined at temperatures from 500 °C to 800 °C and 150 to 300 MPa in KCl-H2O and pure H2O solutions in cold-seal experiments. The solutions were trapped as synthetic fluid inclusions in quartz at experimental conditions, and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA ICPMS).Mo solubilities of 1.6 wt% in the case of KCl-bearing aqueous solutions and up to 0.8 wt% in pure H2O were found. Mo solubility is temperature dependent, but not pressure dependent over the investigated range, and correlates positively with salinity (KCl concentration). Molar ratios of ∼1 for Mo/Cl and Mo/K are derived based on our data. In combination with results of synchrotron X-ray absorption spectroscopy of individual fluid inclusions, it is suggested that Mo-oxo-chloride complexes are present at high salinity (>20 wt% KCl) and ion pairs at moderate to low salinity (<11 wt% KCl) in KCl-H2O aqueous solutions. Similarly, in the pure H2O experiments molybdic acid is the dominant species in aqueous solution. The results of these hydrothermal Mo experiments fit with earlier studies conducted at lower temperatures and indicate that high Mo concentrations can be transported in aqueous solutions. Therefore, the Mo concentration in aqueous fluids seems not to be the limiting factor for ore formation, whereas precipitation processes and the availability of sulfur appear to be the main controlling factors in the formation of molybdenite (MoS2).  相似文献   

15.
Gold ore-forming fluids of the Tanami region, Northern Australia   总被引:1,自引:0,他引:1  
Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260–430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5–5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing inclusions. Calculated δ 18O values for the ore fluids range from 3.8 to 8.5‰ and the corresponding δD values range from −89 to −37‰. Measured δ 13C values from CO2 extracted from fluid inclusions ranged from −5.1 to −8.4‰. These data indicate a magmatic or mixed magmatic/metamorphic source for the ore fluids in the Tanami region. Interpretation of the fluid inclusion, alteration, and structural data suggests that mineralization may have occurred via a number of processes. Gold occurs in veins associated with brittle fracturing and other dilational structures, but in the larger deposits, there is also an association with iron-rich rocks or carbonaceous sediments, suggesting that both structural and chemical controls are important. The major mineralization process appears to be boiling/effervescence of a gas-rich fluid, which leads to partitioning of H2S into the vapor phase resulting in gold precipitation. However, some deposits also show evidence of desulfidation by fluid–rock interaction and/or reduction of the ore-fluid by fluid mixing. These latter processes are generally more prevalent in the higher crustal-level deposits.  相似文献   

16.
黑龙江省铜山斑岩铜矿床流体包裹体研究   总被引:14,自引:4,他引:10  
武广  刘军  钟伟  朱明田  糜梅  万秋 《岩石学报》2009,25(11):2995-3006
铜山大型铜矿床位于小兴安岭西北部,是中亚-兴蒙造山带北东段最著名的斑岩型铜矿床之一,矿体产于加里东期花岗闪长岩和中奥陶世多宝山组安山岩、凝灰岩中,铜矿化与硅化-绢云母化关系密切.流体包裹体研究表明,铜山铜矿床主要发育气液两相包裹体、含CO_2包裹体和含子矿物多相包裹体.成矿流体在形成过程中经历了早、中、晚3个阶段的演化.成矿早阶段发育气液两相水溶液包裹体和少量含子矿物多相包裹体,均一温度介于420℃~>5500C之间,流体盐度介于13.72 wt%~59.76 wt%NaCl eqv之间;中阶段为铜山矿床的主成矿阶段,发育气液两相水溶液包裹体和含CO_2包裹体,均一温度为241℃~417℃,流体盐度介于2.96 wt%~14.04 wt%NaCl eqv之间,主成矿期成矿流体总体上属H_2O-CO_2-NaCl体系;晚阶段仅发育气液两相水溶液包裹体,均一温度为122℃~218℃,盐度介于3.71 wt%~15.96 wt%NaCl eqv之间,表明晚阶段有大气降水的混入.成矿早、中阶段的流体均为不混溶流体,流体沸腾作用是金属硫化物大量沉淀的主要机制.铜山矿床形成于陆缘弧环境.  相似文献   

17.
The operating Rodalquilar gold deposit and the abandoned Triunfo and Maria Josefa gold mines are located within the Sierra del Cabo de Gata volcanic field some 40 km east of Almeria in SE Spain. While the gold mineralization at Rodalquilar is mainly controlled by caldera-tectonics, vein structures at Triunfo and Maria Josefa are not. Wall-rock alteration at Triunfo and Maria Josefa is characterized by argillic alteration (illite/sericite, kaolinite). The alteration zonation around the gold-mineralized vein structures at Rodalquilar ranges from advanced argillic alteration (porous quartz, alunite, pyrophyllite, dickite) over argillic alteration into a regionally developed propylitization. Fluid inclusion studies from all three mines indicate that gold was deposited from low-salinity fluids (2–5 wt.% NaCl equivalent) between 170° and 250 °C. However, the hydrothermal system at Rodalquilar was fed by a second fluid source. High-salinity, halite and/or sylvite-bearing, liquid-rich, and vapour-dominated, CO2-bearing fluid inclusions are assumed to be of magmatic origin. High sulfidation ore mineral assemblages at depth (covellite, enargite, tennantite) and part of the advanced argillic alteration can be related to these fluids. Thus, part of those features which attribute the Rodalquilar gold deposit to the acid-sulfate or high sulfidation type of epithermal gold deposits, stem from magmatically derived fluids which are typical for a porphyry environment, whereas gold mineralization at all three localities is associated with low-salinity fluids, probably of marine origin.  相似文献   

18.
Mesothermal gold mineralization at the Samdong mine (5.5–13.5 g/ton Au), Youngdong mining district, is situated in massive quartz veins up to 1.2 m wide which fill fault fractures within upper amphibolite to epidote-amphibolite facies, Precambrian-banded biotite gneiss. The veins are mineralogically simple, consisting of iron- and base-metal sulfides and electrum, and are associated with weak hydrothermal alteration zones (<0.5 m wide) characterized by silicification and sericitization. Fluid inclusion data and equilibrium thermodynamic interpretation of mineral assemblages indicate that the quartz veins were formed at temperatures between 425 and 190°C from relatively dilute aqueous fluids (4.5–13.8 wt. % equiv NaCl) containing variable amounts of CO2 and CH4. Evidence of fluid unmixing (CO2 effervescence) during the early vein formation indicates approximate pressures of 1.3–1.9 kbars, corresponding to minimum depths of 5–7 km under a purely lithostatic pressure regime. Gold deposition occurred mainly at temperatures between 345 and 240 °C, likely due to decreases in sulfur activity accompanying fluid unmixing. The 34S values of sulfide minerals (-3.0 to 5.3 ), and the measured and calculated O-H isotope compositions of ore fluids (18O = 5.7 to 7.6; = –74 to –80) indicate that mesothermal gold mineralization at the Samdong mine may have formed from dominantly magmatic hydrothermal fluids, possibly related to intrusion of the nearby ilmenite-series, Kimcheon Granite of Late Jurassic age.  相似文献   

19.
The Darreh‐Zereshk (DZ) and Ali‐Abad (AB) porphyry copper deposits are located in southwest of the Yazd city, central Iran. These deposits occur in granitoid intrusions, ranging in composition from quartz monzodiorite through granodiorite to granite. The ore‐hosting intrusions exhibit intense hydrofracturing that lead to the formation of quartz‐sulfide veinlets. Fluid inclusions in hydrothermal quartz in these deposits are classified as a mono‐phase vapor type (Type I), liquid‐rich two phase (liquid + vapor) type (Type IIA), vapor‐rich two phase (vapor + liquid) type (Type IIB), and multi‐phase (liquid + vapor + halite + sylvite + hematite + chalcopyrite and pyrite) type (Types III). Homogenization temperatures (Th) and salinity data are presented for fluid inclusions from hydrothermal quartz veinlets associated with potassic alteration and other varieties of hypogene mineralization. Ore precipitation occurred between 150° to >600°C from low to very high salinity (1.1–73.9 wt% NaCl equivalent) aqueous fluids. Two stages of hydrothermal activity characterized are recognized; one which shows relatively high Th and lower salinity fluid (Type IIIa; Th(L‐V) > Tm(NaCl)); and one which shows lower Th and higher salinity (Type IIIb; Th(L‐V) < Tm(NaCl)). The high Th(L‐V) and salinities of Type IIIa inclusions are interpreted to represent the initial existence of a dense fluid of magmatic origin. The coexistence of Type IIIb, Type I and Type IIB fluid inclusions suggest that these inclusions resulted either from trapping of boiling fluids and/or represent two immiscible fluids. These processes probably occurred as the result of pressure fluctuations from lithostatic to hydrostatic conditions under a pressure of 200 to 300 bar. Dilution of these early fluids by meteoritic water resulted in lower temperatures and low to moderate salinity (<20 wt% NaCl equiv.) fluids (Type IIA). Fluid inclusion analysis reveals that the hydrothermal fluid, which formed mineralized quartz veinlets in the rocks with potassic alteration, had temperatures of ~500°C and salinity ~50 wt% NaCl equiv. Cryogenic SEM‐EDS analyses of frozen and decrepitated ore‐bearing fluids trapped in the inclusions indicate the fluids were dominated with NaCl, and KCl with minor CaCl2.  相似文献   

20.
Kyanite eclogites occur as part of the Münchberger nappe pile in NE-Bavaria, West Germany. Eclogites are overprinted by subsequent amphibolite facies metamorphism. The preservation of primary eclogitic textures as well as symplectitic textures are indicative of rapid decompression. Eclogite formation is estimated to have occurred under conditions of high H2O-activities at pressures between 20 and 26 kbar and temperatures ranging between 590 and 660° C, as is shown by the coexistence of omphacite (Jd 50), kyanite, zoisite and quartz. Minimum pressure estimates, independent of the water activity, range between 9 and 16 kbar at the relevant temperatures. Detailed studies of fluid inclusion reveal two predominant groups of aqueous-brine inclusions: high salinity (14–17 wt% NaCl equiv.) and low salinity (0–8 wt% NaCl equiv.) inclusions. Fluid compositions of both groups of inclusions yield isochores passing close to the estimated amphibolite facies PT-field. The compositions of these fluids are in good agreement with fluid compositions considered from mineral equilibria. None of the fluid inclusions has densities appropriate for eclogite facies metamorphism, but probably reflect later amphibolite facies metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号