首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
利用锡林郭勒盟1961—2018年近58a有完整记录的11个气象站的最大冻土深度、冬季11月—翌年3月平均气温和平均地面最低温度资料,利用描述分析、线性趋势拟合、相关性检验、Mann-Kendall突变检验等方法,对锡林郭勒盟最大冻土深度的时间演变、空间分布及与气温、地温的关系进行了分析。结果表明:二连浩特市最大冻土深度的均方差和变差系数最大,稳定性最差;东乌珠穆沁旗、二连浩特市最大冻土深度变浅幅度最大,气候倾向率为-16.25cm/10a和-15.48cm/10a;20世纪70年代是近58a来最大冻土深度最深的时期;全盟11个站中有5个站最大冻土深度发生突变现象,其中一个站突变点在1982年,其他4个站突变点在1989—1991年;锡林郭勒盟最大冻土深度的空间分布特征为东深西浅、北深南浅;锡林郭勒盟各站11月到翌年3月平均气温和平均地面最低温度均呈上升的趋势;最大冻土深度和平均气温、平均地面最低温度均呈负相关,部分台站相关性显著,随着气温和地温的升高冻土深度在变浅。  相似文献   

2.
利用1961-2010年佳木斯、富锦2个代表站55 a的最大冻土深度及影响冻土的降雪、冬季温度等资料,采用气候趋势系数和气候倾向率的方法,对1961年以来佳木斯地区最大冻土深度变化进行了分析。结果表明,佳木斯地区最大冻土深度年际变化呈减小趋势,西部减小趋势明显大于东部;影响最大冻土深度变化的主要因子是最大积雪深度和冬季平均降水量,而且两者是呈负相关,相关系数通过信度为0.001的显著性检验。  相似文献   

3.
青海高原多年冻土对气候增暖的响应   总被引:15,自引:1,他引:14  
利用青海高原气象台站的年平均地温资料,建立了年平均地温与海拔和经纬度的关系模型,结合地理信息分析系统和DEM数据模拟出青海高原的冻土分布图,分析了青海高原多年冻土对气候变化的响应。结果表明:气候变暖已引起高原多年冻土面积的减少和冻土下界的升高,特别是在多年冻土边缘不衔接或岛状冻土区发生比较明显的退化。20世纪60年代与90年代相比,高原多年冻土下界分布高度上升约71m,季节性冻土厚度平均减小20cm。年最大冻土深度变化的空间分布特征与青海高原近40年来气温变化的空间特征相一致。  相似文献   

4.
利用1961—2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1cm,年际最大值与最小值深度差为82cm,年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

5.
青海高原多年冻土对气候变化的响应   总被引:2,自引:0,他引:2  
年平均地温是冻土分带划分的主要指标之一,本利用青海高原气象台站的年平均地温资料,建立了年平均地温与海拔和经纬度的关系模型,结合地理信息分析系统和DEM数据模似出青海高原的冻土分布图。分析了青海高原多年冻土对气候变化的响应及其对生态环境的影响。结果表明:气候变暖已引起高原多年冻土面积的减少和冻土下界的升高,特别是在多年冻土边缘不衔接或岛状冻土区发生比较明显的退化。二十世纪60年代与90年代相比,高原多年冻土下界分布高度上升约71米,季节性冻土厚度平均减小19cm。年最大冻土深度变化的空间分布特征与青海高原年近40a来气温变化的空间特征相一致。  相似文献   

6.
利用1961~2010年喀什地区所属喀什市、莎车县、巴楚县、塔什库尔干县等4个代表性站50a的年最大冻土深度、冬季平均气温、极端最低气温、极端最低地温等资料,采用气候趋势系数和气候倾向率方法,对1961年以来喀什地区最大冻土深度变化进行了分析。结果表明,喀什地区平原多年平均最大冻土深度为48.1 cm,年际最大值与最小值深度差为82cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-3.8cm/10a,年代际变化呈阶梯状逐渐减小,冻土深度减小主要受冬季平均气温升高的影响,气温每升高1℃,冻土深度减小7.75 cm;山区多年平均最大冻土深度为148.8cm,年际最大值与最小值深度差为88cm,随年际变化总体呈明显的减小趋势,其变化倾向率为-2.5cm/10a。  相似文献   

7.
北疆积雪深度和积雪日数的变化趋势   总被引:6,自引:0,他引:6       下载免费PDF全文
 选取新疆北疆20个站1961-2006年积雪及稳定积雪日数、最大积雪深度资料,同时选择冬季降水量和气温稳定通过0℃以下的日数作为积雪的影响因子,分析了46 a来北疆积雪的变化趋势。结果表明:46 a来最大积雪深度呈显著增加趋势,平均年增长0.8%,其变化与冬季降水量增加有关,呈正相关;积雪日数和稳定积雪日数也呈稍增加趋势,增加主要发生在1960-1980年代,1990年代以来有所减少,其变化与气温稳定通过0℃以下的日数呈显著正相关。  相似文献   

8.
中国东部夏季降水异常与青藏高原冬季积雪的关系   总被引:2,自引:1,他引:1  
杜银  谢志清  肖卉 《气象科学》2014,34(6):647-655
基于中国740站月降水、积雪、地温资料和NCEP/NCAR再分析月资料,采用相关分析、合成分析和最大协方差法,研究了1979—2008年青藏高原冬季积雪异常与长江中下游夏季降水的关系及其可能的影响机制。结果表明:(1)在年际时间尺度上,青藏高原中北部12月—翌年1月积雪指数与长江中下游夏季降水呈显著正相关。在年代际时间尺度上,1990s—2000s的高原积雪指数与长江中下游夏季降水具有较好的同位相变化特征。表明高原中北部12月—翌年1月积雪指数对长江中下游夏季降水异常具有较好的指示意义,可作为预测长江中下游夏季降水年际年代变化的依据。(2)高原12月—翌年1月积雪异常偏多,是长江中下游夏季洪涝的一个强信号,12月—翌年1月积雪指数正异常年与长江中下游夏季降水正异常年有很好的一致性。(3)高原冬季积雪异常影响长江中下游夏季降水的可能途径是:高原冬季积雪异常通过影响同期及其后春季地温,再由春季地温以某种方式把异常信号维持到夏季。之后,地温异常又改变了局地地气热量交换,导致周围大气环流异常,从而影响到其下游的降水过程。  相似文献   

9.
为了得到适用于青藏高原积雪研究的高分辨率、长时间序列的区域尺度资料,利用近30年逐月区域气候系统模式BCC?CSM(m)模拟的1. 125°×1. 125°积雪深度资料、卫星遥感反演的0. 25°×0. 25°积雪深度资料、ERA?Interim 0. 75°×0. 75°地面感热再分析资料和中国气象数据网提供的0. 5°×0. 5°降水资料,评估了BCC?CSM(m)模式对高原积雪深度时空演变的模拟性能及其对高原感热和我国夏季降水的影响,为夏季降水预测提供参考依据。结果表明,BCC?CSM(m)模式能够较好再现冬季高原积雪的时空变化特征,在缺少有效实测积雪资料的高原地区不失为一种分辨率高、时间序列长的代用资料。冬季高原积雪和春季地表感热之间存在反相变化,而且两者的空间分布型存在显著的负相关关系。冬季高原积雪与我国夏季降水存在一定的相关关系,即:与长江中下游地区、四川地区、新疆北部地区、东北东部和高原南部夏季降水呈显著正相关关系,而与华南和东北北部地区呈显著负相关关系。冬季高原积雪存在全区多雪型、全区少雪型、东南少西北多型和东南多西北少型4种空间分布模态,而且不同高原积雪模态对我国夏季降水的影响不同。  相似文献   

10.
利用青藏高原(下称高原)1961-2014年地面110个气象站积雪深度、积雪日数、气温和降水逐日资料,系统地分析了高原积雪深度和积雪日数时空特征,并进一步探究了高原积雪深度和积雪日数与气候因子和地理因子之间的关系。研究发现:1961-2014年高原年平均积雪深度和积雪日数分别为0.26 cm和23.78 d,空间和季节尺度上分布不均匀,且积雪深度和积雪日数大值并不完全重合;在整体变化趋势上,积雪深度和积雪日数均呈缓慢下降趋势,分别为-0.0080±0.0086 cm·(10a)^-1(p=0.36)和-0.64±0.47 d·(10a)^-1(p=0.17),但在数理统计上不显著,且各站点差异性大;积雪深度和积雪日数在春季、冬季和年表现为“减-增-减”的年代际变化特征,而在秋季为“增-减”的变化特征;气温与积雪深度和积雪日数均有较好的相关性,冬季的降水与积雪深度和积雪日数高度相关;积雪深度和积雪日数随海拔呈增加趋势,积雪日数与纬度也高度相关,但积雪深度与纬度的相关性不明显。  相似文献   

11.
本文以青海省刚察、海晏、共和、天峻4个站代表青海湖地区,利用1981-2014年的气温、地温及冻土资料,对青海湖地区气温、地温及冻土变化进行分析,得出:青海湖地区的气温变化称逐渐升温的态势,这同全球的气温变化趋势一致,均为升温的态势,青海湖地区年平均气温的升温率为0.55℃/10a,变暖的季节主要是冬季;青海湖地区的地温变化同气温变化基本一致,也称逐渐升温的态势;最大冻土深度的变化与地温变化的关系并不明显,而与极端最低气温有着反相关。  相似文献   

12.
新疆阿勒泰地区积雪变化分析   总被引:2,自引:0,他引:2  
采用阿勒泰地区7个测站1961~2008年逐月最大积雪深度、积雪和降雪日数及其初终日以及冬季(11至次年3月)平均气温、平均最高、最低气温及降水量资料,运用线性趋势、Mann-Kendall突变检验及R/S分析法对阿勒泰地区积雪变化进行了分析研究。结果表明:该地区冬季平均气温呈明显的上升趋势,最低气温的上升更为显著;降水量呈显著增多趋势。该地区大部地方积雪、降雪最早出现在9、10月,最迟在次年4、5月。历年平均最大积雪深度和积雪日数的年变化呈单峰型,降雪日数分布则较复杂;在空间分布上,积雪深度最大值在阿勒泰站,最小值在福海站;积雪日数福海站最少,吉木乃站最多;降雪日数自西向东逐渐减小。最大积雪深度呈显著的增加趋势、积雪和降雪日数趋势变化不显著,但在空间分布上有差异;受积雪和降雪初日推后的影响,积雪期和降雪期均呈显著的减少趋势。突变检测表明,就全区平均来说最大积雪深度在1983年前后发生了显著的突变,与冬季降水量的变化一致;平均积雪和降雪日数则比较稳定,没有发生显著的突变,各区域变化与全区不完全同步。R/S分析表明,最大积雪深度、积雪和降雪日数在未来具有反持续性;平均降雪日数、福海站最大积雪深度、吉木乃站积雪日数、布尔津站降雪日数的反持续性相对最强。  相似文献   

13.
高寒地区冻土活动层变化特征分析   总被引:5,自引:0,他引:5  
利用1960-2010年黑龙江省83个气象站的冻土和0 cm地温资料,采用线性回归和多项式回归方法,分析了黑龙江省冻土活动层的时空变化特征,揭示了黑龙江省五个典型气候区域最大冻土深度的变化趋势与特征,讨论了黑龙江省冻土活动层的影响因子。结果表明:黑龙江省冻土活动层冻结开始于9月份,至冬季3月份冻土深度达到最大值,8月份时冻土厚度接近于0 cm。由北向南,最大冻土深度逐渐变小,冻结开始时间逐渐推迟,融化结束时间逐渐提前。黑龙江省最大冻土深度均呈显著减小趋势,存在明显的退化趋势。从年代际变化上看,20世纪90年代前黑龙江省最大冻土深度变化不大,最大冻土深度较深,90年代后最大冻土深度呈显著减小趋势。高纬度地区地温低,在同等条件下冻土深度较低纬度地区大。  相似文献   

14.
青海省道路结冰变化时空分布特征及其影响等级划分   总被引:1,自引:0,他引:1  
利用2004—2012年10月至次年4月青海省主要公路沿线自动气象站逐时气象资料,分析了青海省道路结冰的时空分布特征,讨论了道路结冰与地面和气温之间的变化关系,以及积雪深度与地面最高温度的关系。分析表明,青海省道路结冰的空间分布为从东南向西北逐渐减少,结冰时间主要集中在1—4月。由于道路结冰主要取决于气温和积雪深度变化,而地面温度与气温,积雪深度与地面最高温度之间存在显著的线性相关关系,因此分别建立了地温和积雪深度预报模型,从而对道路结冰进行预警。根据道路结冰的持续时间,将道路结冰对交通安全影响程度划分为4个气象等级,分别为极严重、严重、较重和轻度道路结冰。  相似文献   

15.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

16.
利用和林县气象局1960—2008年气温、40、80cm地温月平均数据,降水、日照、积雪月总量数据,对地温与气温的变化关系及其影响因子进行了分析。结果表明,40cm地温与气温有相同的变化趋势,其突变点与气温变化的突变点相同,均为1987年。40cm地温在夏季略受降水的影响,而冬季受积雪的影响较明显。其终年与日照时数相关较弱,说明地-气辐射过程平衡的速度较快,会很快消除掉其他气象因子带来的地温与气温之间差异的阶变。40cm与80cm地温变化的一致度很高,表明80cm很少得到来自地壳内部热量,80cm地温变化的两个异常点分别位于1988年和1990年,处于1987年附近但落后于1987年,说明气候突变会影响到80cm地温变化,但影响滞后。  相似文献   

17.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

18.
一次江淮气旋暴雪的积雪特征及气象影响因子分析   总被引:4,自引:4,他引:0  
杨成芳  刘畅 《气象》2019,45(2):191-202
利用自动站、人工加密观测及常规观测资料,通过对2017年2月21—22日一次江淮气旋暴雪过程积雪特征的分析,揭示了近地面气象要素对积雪深度的复杂影响。结果表明:(1)江淮气旋系统特有的空间结构导致山东南、北地区的降雪量和积雪深度不均衡分布。(2)积雪深度具有时效性,在降雪结束时达到峰值,因温度的变化导致峰值不一定维持到次日08时。(3)积雪深度是近地面多气象要素共同作用的结果,降水相态、降雪量、降雪强度、气温、地温和风速均有影响。主要表现为:雨夹雪在转为纯雪之前可产生不超过1 cm的积雪,如果不转雪则不会产生有量积雪;各地降雪含水比差异较大,全省平均为0. 5 cm·mm~(-1),低于全国平均值;在降雪不融化的情况下,降雪量、降雪强度越大则积雪越深,降雪强度大是气温和地温都高于0℃时产生积雪的必要条件;地温和气温越低对积雪形成越有利,积雪开始产生时的地温最高阈值多在0℃左右,地温先突降后缓升是积雪产生前后的共性特征,积雪产生后1~2 h内地温略有上升并逐渐趋于稳定;积雪产生时气温一般低于0℃,气温高于0℃时大部分降雪融化;有利于产生积雪的平均风力多不超过2级,极大风则在3~4级以下。  相似文献   

19.
为了更好地了解沙漠腹地浅层地温特征以及对气候的响应关系,利用塔中气象站1996—2015年日平均气温、浅层地温(0~20cm)以及总云量、低云量、日照时数、风速、沙尘日数等资料,分析沙漠腹地地温分布特征以及与气象因子的响应关系。结果表明:浅层地温在春、夏季热量向下传导,秋、冬季则表现为相反趋势,气温和地温(0~20cm)的月平均值分别为11.8、16.4、16.0、16.1、16.1℃和16.3℃;在0~10cm地温之间,变化幅度呈现7月份波动最大,在10~20cm地温之间,12月波动最大,9月份,地温随着深度的增加波动一直是最小的;夏季,地温不是影响气温的主要影响因子,在其他季节,气温与0cm地温相关性最明显;(4)冬季,风速是影响气温和地温的主要气象因子。  相似文献   

20.
干旱灾害是甘南高原发生最频繁的气象灾害之一,严重影响该地区农牧业生产和生态环境安全。利用1973—2022年甘南高原及周边31个气象观测站逐月降水和气温观测数据,选取标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI)表征气象干旱,采用Mann-Kendall检验和Sen’s slope估计方法,研究甘南高原年、季尺度的干旱时空分布及变化特征。结果表明:近50 a来,甘南高原年SPEI呈显著减小趋势,全域整体趋向干旱化,1986年为突变年。干旱变化趋势存在季节差异,夏、秋季呈干旱加剧趋势,春、冬季则相反。年和季SPEI变化趋势存在空间差异性,年和秋季全域呈干旱化趋势;夏季甘南高原中东部呈干旱加剧趋势,春季与夏季相似,但春季干旱加重区域和干旱化程度明显小于夏季;冬季整体呈干旱减轻趋势。甘南高原年和季节尺度不同等级干旱发生频率有明显的空间差异,高原中东部轻旱频发,高原南部中旱和重旱高发,特旱各区域发生频率均较低;高原西部干旱发生频率总体小于高原中东部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号