首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The influences of rainfall patterns on shallow landslides due to the dissipation of matric suction are examined in this study. Four representative rainfall patterns including the uniform, advanced, intermediated, and delayed rainfalls are adopted. The results show that not only the occurrence of shallow landslides but also the failure depth and the time of failure are affected by the rainfall pattern. The different rainfall patterns seem to have the same minimum landslide-triggering rainfall amount. There is a rainfall duration threshold for landslide occurrence for a rainfall event with larger than the minimum landslide-triggering rainfall amount. For each rainfall pattern, the rainfall duration threshold for landslide occurrence decreases to constant with the increase of rainfall amount. The uniform rainfall has the least rainfall duration threshold for landslide occurrence, followed by the advanced rainfall, and then the intermediated rainfall. For each rainfall pattern, the failure depths and the times of failure from the same amount of rainfall with different durations could be largely different. In addition, the differences of the failure depths and the times of failure between various rainfall patterns with the same amount and duration of rainfall could be also significant. The failure depth and the time of failure, as compared with the occurrence of shallow landslides, are more sensitive to the rainfall condition. In other words, in comparison with the evaluation of the occurrence of shallow landslides, it needs more accurate rainfall prediction to achieve reliable estimations of the failure depth and the time of failure.  相似文献   

2.
降雨类型对浅层滑坡稳定性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
罗渝  何思明  何尽川 《地球科学》2014,39(9):1357-1363
在降雨与浅层滑坡稳定性关系的研究中, 目前的研究往往忽略了降雨类型的影响.因此, 选取4种具有代表性的降雨类型: 均匀型、递增型、递减型以及峰值型为对象, 基于Rosso提出的降雨强度与地下水关系模型, 构建考虑降雨类型的浅层滑坡地下水位高度随降雨时间的变化关系, 研究不同降雨类型对浅层滑坡地下水位变化的影响.进而, 结合无限边坡理论, 建立浅层滑坡的稳定性计算模型, 研究不同降雨类型对浅层滑坡稳定性的影响.研究结果表明: 降雨类型对浅层滑坡稳定性的影响是明显的, 递增型降雨作用下的浅层滑坡安全系数最小, 其次是均匀型降雨, 再次是峰值型降雨, 最大的是递减型降雨; 同时在确定浅层滑坡临界降雨量和进行区域浅层滑坡易发性研究时降雨类型的影响不容忽视.   相似文献   

3.
The analysis of slope instability induced by rainfall was usually performed using the main drying curve as the measurement of the main wetting curve is a more time-consuming and costly task. In this study, the influences of the main drying and wetting curves on rainfall-induced shallow landslides are examined. Three designed scenarios and a real case scenario are used to conduct this examination. The prediction of shallow landslide occurrence is related to the main drying and wetting curves due to the strong relation between groundwater pressure head and hysteresis effect. The main wetting curve may have a less minimum landslide-triggering rainfall amount and a less rainfall duration threshold for landslide occurrence than the drying wetting curve. For safety’s sake, an underestimation of shallow landslide occurrence may be produced by the commonly used main drying curve. In addition, besides the shallow landslide occurrence, the failure depth and the time to failure are also influenced by the main drying and wetting curves. The hysteresis effect should be taken into account for assessing rainfall-induced shallow landslides.  相似文献   

4.
 Hydrological landslide-triggering thresholds separate combinations of daily and antecedent rainfall or of rainfall intensity and duration that triggered landslides from those that failed to trigger landslides. They are required for the development of landslide early warning systems. When a large data set on rainfall and landslide occurrence is available, hydrological triggering thresholds are determined in a statistical way. When the data on landslide occurrence is limited, deterministic models have to be used. For shallow landslides directly triggered by percolating rainfall, triggering thresholds can be established by means of one-dimensional hydrological models linked to the infinite slope model. In the case of relatively deep landslides located in topographic hollows and triggered by a slow accumulation of water at the soil-bedrock contact, simple correlations between landslide occurrence and rainfall can no longer be established. Therefore real-time failure probabilities have to be determined using hydrological catchment models in combination with the infinite slope model. Received: 15 October 1997 · Accepted: 25 June 1997  相似文献   

5.
Researchers have long attempted to determine the amount of rainfall needed to trigger slope failures, yet relatively little progress has been reported on the effects of climate change on landslide initiation. Indeed, some relationships between landslides and climate change have been highlighted, but sign and magnitude of this correlation remain uncertain and influenced by the spatial and temporal horizon considered. This work makes use of statistically adjusted high-resolution regional climate model simulations, to study the expected changes of landslides frequency in the eastern Esino river basin (Central Italy). Simulated rainfall was used in comparison with rainfall thresholds for landslide occurrence derived by two observation-based statistical models (1) the cumulative event rainfall–rainfall duration model, and (2) the Bayesian probabilistic model. Results show an overall increase in projected landslide occurrence over the twenty-first century. This is especially confirmed in the high-emission scenario representative concentration pathway 8.5, where according to the first model, the events above rainfall thresholds frequency shift from ~?0.025 to ~?0.05 in the mountainous sector of the study area. Moreover, Bayesian analysis revealed the possible occurrence of landslide-triggering rainfall with a magnitude never occurred over the historical period. Landslides frequency change signal presents also considerable seasonal patterns, with summer displaying the steepest positive trend coupled to the highest inter-model spread. The methodological chain here proposed aims at representing a flexible tool for future landslide-hazard assessment, applicable over different areas and time horizons (e.g., short-term climate projections or seasonal forecasts).  相似文献   

6.
以东南沿海地区花岗岩残积土为代表性土样,以土体斜坡坡度、降雨强度为控制变量,设计了降雨滑坡模拟试验方案,在大雨、暴雨、大暴雨、特大暴雨等四种不同降雨等级条件下对四种不同坡度的斜坡模型进行了强降雨模拟试验,研究降雨强度和斜坡坡度对其滑塌破坏的影响特征。结果表明:降雨强度越大,发生深层破坏或浅层整体破坏的趋势越明显,其变形跨塌滑块尺寸越大,破坏范围越集中,破坏程度增强;同时土体裂纹出现的时间越早,斜坡滑塌破坏所需的降雨时长逐渐减少。随斜坡坡度的增大,破坏形式由滑落滑坡逐步转化散落崩塌破坏,其相应斜坡滑塌破坏所需的降雨时长减少。研究结论对揭示降雨引发残积土滑坡等地质灾害发生规律具有重要的理论和现实意义。  相似文献   

7.
降雨与滑坡灾害相关性分析及预警预报阀值之探讨   总被引:34,自引:3,他引:31  
高华喜  殷坤龙 《岩土力学》2007,28(5):1055-1060
详细研究了深圳市降雨与滑坡的历史资料,对区域性滑坡与降雨量进行偏相关分析,与降雨强度进行相关分析以及与降雨时间进行了系统地统计分析。研究结果表明,(1)滑坡的活动1~4日的降雨量及一次降雨过程的降雨量偏相关系数较大,表明一次性降雨量达到或超过某一数值时区域性滑坡就可以出现;(2)暴雨尤其是大暴雨及特大暴雨与滑坡的关系非常密切,相关系数达0.8以上,大暴雨或特大暴雨具有直接触发滑坡的作用;(3)滑坡活动时间与季节性降雨相对应,季节雨量越多,滑坡亦越多;另外滑坡活动时间与暴雨、大暴雨相吻合或略滞后,滞后时间一般不超过4 d,暴雨的当天及次日发生滑坡的可能性最大。在此基础上,探讨了区域性滑坡发生的临界降雨量和降雨强度阀值。最后将滑坡灾害的地质模型与降雨模型耦合建立了滑坡灾害的空间预警预报区划指标和等级系统,为区域滑坡灾害发生的时间与空间预报预警提供了科学依据。  相似文献   

8.
滑坡频度-降雨量的分形关系   总被引:3,自引:0,他引:3  
降雨-滑坡关系是对降雨引发的滑坡进行预报的一个重要基础。本文根据中国浙江省1990~2003年期间有明确日期和坐标记录的1414个滑坡数据和基本覆盖浙江全部陆地区域的1257个雨量站记录的日降雨量数据,研究了滑坡频度-降雨关系。研究结果表明,降雨引发滑坡的频度与降雨量之间遵循分形的幂指数关系,并且在两个尺度的降雨量范围内具有不同的标度指数。按照幂指数关系拟合的两条滑坡累计频度-降雨关系线交点(拐点)处的降雨量(Rin)指出了引发75%左右滑坡的累计降雨阀值的上边界(以THCR表示)。对1d、4d、6d和11d这4个累计降雨时段的研究表明,引发75%左右滑坡的累计降雨阀值分别为205mm(1d)、273mm(4d)、294mm(6d)、315mm(11d)。  相似文献   

9.
A global database of 2,626 rainfall events that have resulted in shallow landslides and debris flows was compiled through a thorough literature search. The rainfall and landslide information was used to update the dependency of the minimum level of rainfall duration and intensity likely to result in shallow landslides and debris flows established by Nel Caine in 1980. The rainfall intensity–duration (ID) values were plotted in logarithmic coordinates, and it was established that with increased rainfall duration, the minimum average intensity likely to trigger shallow slope failures decreases linearly, in the range of durations from 10 min to 35 days. The minimum ID for the possible initiation of shallow landslides and debris flows was determined. The threshold curve was obtained from the rainfall data using an objective statistical technique. To cope with differences in the intensity and duration of rainfall likely to result in shallow slope failures in different climatic regions, the rainfall information was normalized to the mean annual precipitation and the rainy-day normal. Climate information was obtained from the global climate dataset compiled by the Climate Research Unit of the East Anglia University. The obtained global ID thresholds are significantly lower than the threshold proposed by Caine (Geogr Ann A 62:23–27, 1980), and lower than other global thresholds proposed in the literature. The new global ID thresholds can be used in a worldwide operational landslide warning system based on global precipitation measurements where local and regional thresholds are not available..  相似文献   

10.
Rainfall-induced landslides in Hulu Kelang area, Malaysia   总被引:5,自引:2,他引:3  
Hulu Kelang is known as one of the most landslide-prone areas in Malaysia. The area has been constantly hit by landslide hazards since 1990s. This paper provides an insight into the mechanism of rainfall-induced landslide in the Hulu Kelang area. Rainfall patterns prior to the occurrences of five selected case studies were first analyzed. The results showed that daily rainfall information is insufficient for predicting landslides in the area. Rainfalls of longer durations, i.e., 3–30 days prior to the landslides should be incorporated into the prediction model. Numerical simulations on a selected case study demonstrated that both matric suction and factor of safety decreased steadily over time until they reached the lowest values on the day of landslide occurrence. Redistribution of infiltrated rainwater in the soil mass could be a reason for the slow response of failure mechanism to rainfall. Based on 21 rainfall-induced landslides that had occurred in the area, three rainfall thresholds were developed as attempts to predict the occurrence of rainfall-induced landslide. The rainfall intensity–duration threshold developed based on the local rainfall conditions provided a reasonably good prediction to the landslide occurrence. The cumulative 3- versus 30-day antecedent precipitation index threshold chart was capable of giving the most reliable prediction with the limiting threshold line for major landslide yielded a reliability of 97.6 %.  相似文献   

11.
巴中市地处四川盆地和秦岭造山带的过渡地带,地质构造以宽缓的隔档式褶皱为主,地层岩性主要为砂泥岩互层的红层岩体,红层滑坡灾害多为强降雨诱发。开展滑坡灾害与降雨雨型关系的研究,可为该地区滑坡灾害临界降雨阈值和预警服务提供参考。文章通过统计巴中市强降雨事件与滑坡发生的对应关系,初步揭示了滑坡灾害触发的降雨特征,并在分析降雨强度的基础上,结合降雨历时和降雨过程,对巴中市2007—2016年之间23场月降雨量大于200 mm的降雨事件进行了细分,共划分为单峰型、前峰型、后峰型、递增型、递减型、均匀型6类降雨雨型。对各类降雨雨型下滑坡发生数量进行统计,递增型和单峰型降雨事件下滑坡发生的比例分别为46.90%和25.02%。经稳定性计算分析,递增型和单峰型两类雨型条件下滑坡稳定性有明显降低,降雨过程对滑坡发生具有显著影响。结果表明:强降雨期间应加强降雨雨型的分析,为适时发布区域滑坡灾害预警信息、做好提前避让提供技术支撑。  相似文献   

12.
Rainfall-induced landslides (RILs) have been a source of social and economic disruption in the mountainous Baguio area in northern Philippines. Prolonged heavy rainfall usually happens during tropical cyclone and southwest monsoon activity. A pragmatic approach to RIL mitigation is to develop rainfall-based early warning. We implemented a modified regression method to derive the empirical minimum intensity (I)–duration (D) threshold I = 6.46 D ?0.28 and a normalized ID threshold NI = 0.002 D ?0.28 for rainfall duration ranging between 24 and 264 h. Using a separate data set to evaluate the applicability of the threshold, 93% of the landslide-triggering rainfall events fell above the derived threshold. RILs also occurred when 24-h rainfall was 0.02–28% of the mean annual precipitation or after accumulating at least 500 mm of rainfall from the onset of the rainy season. The thresholds may be further refined as more landslide data become available in the future.  相似文献   

13.
The state of knowledge and resources available to issue alerts of precipitation-induced landslides vary across the USA. Federal and state agencies currently issue warnings of the potential for shallow, rapidly moving landslides and debris flows in a few areas along the Pacific coast and for areas affected by Atlantic hurricanes. However, these agencies generally lack resources needed to provide continuous support or to expand services to other areas. Precipitation thresholds that form the basis of landslide warning systems now exist for a few areas of the USA, but the threshold rainfall amounts and durations vary over three orders of magnitude nationwide and over an order of magnitude across small geographic areas such as a county. Antecedent moisture conditions also have a significant effect, particularly in areas that have distinct wet and dry seasons. Early warnings of shallow landslides that include specific information about affected areas, probability of landslide occurrence, and expected timing are technically feasible as illustrated by a case study from the Seattle, WA area. The four-level warning scheme (Null, Outlook, Watch, Warning) defined for Seattle is based on observed or predicted exceedance of a cumulative precipitation threshold and a rainfall intensity–duration threshold combined with real-time monitoring of soil moisture. Based on analysis of historical data, threshold performance varies according to precipitation characteristics, and threshold exceedance corresponds to a given probability of landslide occurrence. Experience in Seattle during December 2004 and January 2005 illustrates some of the challenges of providing landslide early warning on the USA West Coast.  相似文献   

14.
The state of knowledge and resources available to issue alerts of precipitation-induced landslides vary across the USA. Federal and state agencies currently issue warnings of the potential for shallow, rapidly moving landslides and debris flows in a few areas along the Pacific coast and for areas affected by Atlantic hurricanes. However, these agencies generally lack resources needed to provide continuous support or to expand services to other areas. Precipitation thresholds that form the basis of landslide warning systems now exist for a few areas of the USA, but the threshold rainfall amounts and durations vary over three orders of magnitude nationwide and over an order of magnitude across small geographic areas such as a county. Antecedent moisture conditions also have a significant effect, particularly in areas that have distinct wet and dry seasons. Early warnings of shallow landslides that include specific information about affected areas, probability of landslide occurrence, and expected timing are technically feasible as illustrated by a case study from the Seattle, WA area. The four-level warning scheme (Null, Outlook, Watch, Warning) defined for Seattle is based on observed or predicted exceedance of a cumulative precipitation threshold and a rainfall intensity–duration threshold combined with real-time monitoring of soil moisture. Based on analysis of historical data, threshold performance varies according to precipitation characteristics, and threshold exceedance corresponds to a given probability of landslide occurrence. Experience in Seattle during December 2004 and January 2005 illustrates some of the challenges of providing landslide early warning on the USA West Coast.  相似文献   

15.
台风暴雨型滑坡降雨阈值曲线研究以福建地区为例   总被引:3,自引:0,他引:3  
台风暴雨型滑坡具有群发性、规模小、爆发性强的特点,容易造成严重的人员伤亡和巨大的财产损失。本文应用极值理论分析,以极端降雨重现期的极大值作为标准并计算有效的降雨区间,通过统计分析,确定触发暴雨型滑坡的降雨阈值曲线。应用模型对福建地区台风暴雨型滑坡进行了分析,福建省3个灾害高发区为:南平三明地区、泉州地区和宁德地区。南平三明地区降雨阈值较高,但发生的滑坡数量较多,主要以3d的降雨为主;泉州地区小于3d的连续降雨和大于8d的连续降雨是触发该地滑坡的主要降雨区间;宁德地区对短期降雨较为敏感,滑坡主要由1d的降雨引起。比较分析研究表明,台风地区触发滑坡的降雨阈值要高于非台风地区。降雨型滑坡阈值主要受气候,地质和土壤厚度影响,气候因素为主控因素。  相似文献   

16.
邱战洪  何春木  朱兵见  陈合龙 《岩土力学》2012,33(10):3151-3155
近10年的运营经验表明,国内南方地区第1批建造的山谷型垃圾填埋场中的渗滤液水位一般较高。同时,现有研究表明,降雨入渗引起渗滤液水位过高是垃圾填埋场失稳的主要诱因之一。因此,研究强降雨条件下山谷型垃圾填埋场的水分运移规律及其稳定性,具有重要的现实意义。基于七子山填埋场浅层、中层和深层垃圾土的土-水特征曲线和Brooks-Corey公式,利用非线性拟合技术得到垃圾土的渗透性函数;运用饱和-非饱和渗流理论,对递减型、中心型、增强型和平均型4种降雨模式下七子山填埋场的水分运移进行了数值计算;利用极限平衡理论,对不同降雨模式下七子山填埋场的稳定性进行了分析。结果表明,降雨模式对山谷型垃圾填埋场内的水分运移规律和填埋场的稳定性有显著的影响,递减型降雨模式下填埋场内孔隙水压的变化最大,同时填埋场稳定系数也下降最为明显,为最不利降雨模式;经历7 d 746 mm的极端强降雨后,七子山填埋场具有极大的失稳隐患。  相似文献   

17.
Majority of landslides in the Indian sub-continent are triggered by rainfall. Several attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity-duration and antecedent rainfall models on global, regional and local scales for the occurrence of landslides. However, in the context of the Indian Himalayas, the rainfall thresholds for landslide occurrences are not yet understood fully. Neither on regional scale nor on local scale, establishing such rainfall thresholds for landslide occurrences in Indian Himalayas has yet been attempted. This paper presents an attempt towards deriving local rainfall thresholds for landslides based on daily rainfall data in and around Chamoli-Joshimath region of the Garhwal Himalayas, India. Around 128 landslides taken place in last 4 years from 2009 to 2012 have been studied to derive rainfall thresholds. Out of 128 landslides, however, rainfall events pertaining to 81 landslides were analysed to yield an empirical intensity–duration threshold for landslide occurrences. The rainfall threshold relationship fitted to the lower boundary of the landslide triggering rainfall events is I?=?1.82 D ?0.23 (I?=?rainfall intensity in millimeters per hour and D?=?duration in hours). It is revealed that for rainfall events of shorter duration (≤24 h) with a rainfall intensity of 0.87 mm/h, the risk of landslide occurrence in this part of the terrain is expected to be high. Also, the role of antecedent rainfall in causing landslides was analysed by considering daily rainfall at failure and different period cumulative rainfall prior to failure considering all 128 landslides. It is observed that a minimum 10-day antecedent rainfall of 55 mm and a 20-day antecedent rainfall of 185 mm are required for the initiation of landslides in this area. These rainfall thresholds presented in this paper may be improved with the hourly rainfall data vis-à-vis landslide occurrences and also data of later years. However, these thresholds may be used in landslide warning systems for this particular region of the Garhwal Himalayas to guide the traffic and provide safety to the tourists travelling along this pilgrim route during monsoon seasons.  相似文献   

18.
Shallow slope failure due to heavy rainfall during rainstorm and typhoon is common in mountain areas. Among the models used for analyzing the slope stability, the rainwater infiltration model integrated with slope stability model can be an effective way to evaluate the stability of slopes during rainstorm. This paper will propose an integrated Green–Ampt infiltration model and infinite slope stability model for the analysis of shallow type slope failure. To verify the suitability of the proposed model, seven landslide cases occurred in Italy and Hong Kong are adopted in this paper. The results indicate that the proposed model can be used to distinguish failed and not-yet failed slopes. In addition, the proposed model can be used as the first approximation for estimating the occurrence time of a rainfall-induced shallow landslide and its depth of sliding.  相似文献   

19.
Rainfall intensity–duration (ID) thresholds are commonly used to predict the temporal occurrence of debris flows and shallow landslides. Typically, thresholds are subjectively defined as the upper limit of peak rainstorm intensities that do not produce debris flows and landslides, or as the lower limit of peak rainstorm intensities that initiate debris flows and landslides. In addition, peak rainstorm intensities are often used to define thresholds, as data regarding the precise timing of debris flows and associated rainfall intensities are usually not available, and rainfall characteristics are often estimated from distant gauging locations. Here, we attempt to improve the performance of existing threshold-based predictions of post-fire debris-flow occurrence by utilizing data on the precise timing of debris flows relative to rainfall intensity, and develop an objective method to define the threshold intensities. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. We identified that (1) there were statistically significant differences between peak storm and triggering intensities, (2) the objectively defined threshold model presents a better balance between predictive success, false alarms and failed alarms than previous subjectively defined thresholds, (3) thresholds based on measurements of rainfall intensity over shorter duration (≤60 min) are better predictors of post-fire debris-flow initiation than longer duration thresholds, and (4) the objectively defined thresholds were exceeded prior to the recorded time of debris flow at frequencies similar to or better than subjective thresholds. Our findings highlight the need to better constrain the timing and processes of initiation of landslides and debris flows for future threshold studies. In addition, the methods used to define rainfall thresholds in this study represent a computationally simple means of deriving critical values for other studies of nonlinear phenomena characterized by thresholds.  相似文献   

20.
For the assessment of shallow landslides triggered by rainfall, the physically based model coupling the infinite slope stability analysis with the hydrological modeling in nearly saturated soil has commonly been used due to its simplicity. However, in that model the rainfall infiltration in unsaturated soil could not be reliably simulated because a linear diffusion-type Richards’ equation rather than the complete Richards’ equation was used. In addition, the effect of matric suction on the shear strength of soil was not actually considered. Therefore, except the shallow landslide in saturated soil due to groundwater table rise, the shallow landslide induced by the loss in unsaturated shear strength due to the dissipation of matric suction could not be reliably assessed. In this study, a physically based model capable of assessing shallow landslides in variably saturated soils is developed by adopting the complete Richards’ equation with the effect of slope angle in the rainfall infiltration modeling and using the extended Mohr–Coulomb failure criterion to describe the unsaturated shear strength in the soil failure modeling. The influence of rainfall intensity and duration on shallow landslide is investigated using the developed model. The result shows that the rainfall intensity and duration seem to have similar influence on shallow landslides respectively triggered by the increase of positive pore water pressure in saturated soil and induced by the dissipation of matric suction in unsaturated soil. The rainfall duration threshold decreases with the increase in rainfall intensity, but remains constant for large rainfall intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号