首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lakes and streams in the foothills near Tookik Lake, Alaska, at 68°N have been studied since 1975 to predict physical, chemical and biological impacts of future global change. Experimental manipulations include whole lake and continuous stream fertilization as well as removal and addition of predators (copepods, lake trout, grayling, sculpin). Based on our evidence the following scenario is likely. Warming thaws the upper layers of permafrost and streams and lakes become enriched with phosphorus. Streams respond quickly with higher production of diatoms but animal grazers keep biomass changes to a minimum. Fish productivity also increases. If phosphorus levels are too high, mosses become the dominant primary producer and sequester all of the nutrients. Growth of Arctic grayling under the present conditions only occurs in summers with higher than average stream flow. The present population would be stressed by warmer temperatures. When higher phosphorus levels reach lakes and cause slight europhication, the number of trophic levels will increase, especially within the microbial food web. Warmer lake temperatures increase stratification and, combined with eutrophication, could decrease oxygen in the hypolimnion. Oxygen levels will also decrease in winter under the ice cover. Eventually this habitat change will eliminate the lake trout, a top predator. Removal of lake trout results in a striking increase in abundance and productivity of smaller fish, including small lake trout, and the emergence of burbot as an alternate top predator. Large species of zooplankton will become virtually extinct.  相似文献   

2.
Terrace remnants are commonly used to reconstruct longitudinal profiles of rivers and floodplains, and to establish temporal correlations of events in fluvial systems. In most cases, it is assumed that the terrace remnants represent time-equivalent surfaces. Our observations of terrace formation in flume experiments and in a degrading braided river, Ash Creek, Arizona, suggest that this assumption is not always valid. Degradation resulted from a reduction in upstream sediment delivery to braided channels. In both the flume and Ash Creek, degradation in the upstream reach produced a number of inset terraces, while the production of sediment in the degrading reach simultaneously caused further aggradation downstream. Thus, stratigraphically lower surfaces in the upstream reaches are temporally equivalent to higher surfaces in downstream reaches. The downstream progression of the wave of incision produced more terraces upstream than downstream, and terrace surfaces could not be correlated on the basis of relative position or elevation above the channel bed. Furthermore, a physically continuous terrace tread was produced by longitudinal accretion of temporally non-equivalent depositional segments, as the locus of deposition progressed downstream. Therefore, in some instances, physically continuous terrace treads may not be time-equivalent surfaces that represent former channel bed or floodplain profiles. [Key words: terrace development, degradation, braided channels, channel pattern change.]  相似文献   

3.
In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.  相似文献   

4.
Ronald B. Zelt  Ellen E. Wohl   《Geomorphology》2004,57(3-4):217-233
Large variability in responses of stream sediment and large woody debris (LWD) to severe fire has limited the accurate prediction of the magnitude and duration of fire effects on streams. Conditions in one Absaroka Range stream that was severely burned in 1988 were compared to those in an adjacent, undisturbed stream to improve understanding of fire effects on channel and LWD characteristics beyond the first few years. Ten reaches of each stream were sampled during summer 1999.Average bankfull channel width was greater in burned Jones Creek than in unburned Crow Creek. LWD frequency and overall frequency of LWD accumulations were greater in Crow Creek than Jones Creek. Debris-jam frequency was greater in Jones Creek after accounting for differences in the frequency of pieces with length greater than channel width. Larger piece size and better anchoring contributed to more frequent, small accumulations of LWD in Crow Creek. Differences between streams in LWD frequency are consistent with greater mobility of debris in burned Jones Creek. LWD-associated fine-sediment deposits were thicker but less frequent along Jones Creek than Crow Creek.  相似文献   

5.
Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as ‘monsoon’ or ‘cloudburst’ rains. Velocities of the moving debris range from about 5 km/h to about 90 km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows.  相似文献   

6.
A catastrophic flood ire 1965 on Plum Creek, a perennial sandbed stream in the western Great Plains, removed most of the bottomland vegetation and transformed the single-thalweg stream into a wider, braided channel. Following eight years of further widening associated with minor high flows, a process of channel narrowing began in 1973; narrowing continues today. The history of channel narrowing was reconstructed by counting the annual rings of 129 trees and shrubs along a 5-km reach of Plum Creek near Louviers, Colorado. Sixty-three of these plants were excavated in order to determine the age and elevation of the germination point. The reconstructed record of channel change was verified from historical aerial photographs, and then compared to sediment stratigraphy and records of discharge and bed elevation from a streamflow gaging station in the study reach. Channel narrowing at Plum Creel: occurs in two ways. First, during periods of high flow, sand and fine gravel are delivered to the channel, temporarily raising the general bed-level. Subsequently, several years of uninterrupted low flows incise a narrower channel. Second, during years of low flow, vegetation becomes established on the subaerial part of the present channel bed. In both cases, surfaces stabilize as a result of vegetation growth and vertical accretion of sediment.  相似文献   

7.
Over the past 150 years, major land use changes have occurred in the Stemple Creek Watershed in northern California that have caused erosion to move soils from the upland to the flood plain, stream channels, and the bay. The purpose of this study is to document the recent (1954 to present) sediment deposition patterns in the flood plain area adjacent to Stemple Creek using the 137Cesium technique. Sediment deposition ranged from 0.26 to 1.84 cm year−1 for the period from 1964 to 2002 with an average of 0.85±0.41 cm year−1. Sediment deposition rates were higher for the 1954 to 1964 period with a range of 0.31–3.50 cm year−1 and an average of 1.29±1.04 cm year−1. These data indicate that sediment deposition in the flood plain has decreased since the middle 1950s, probably related to reduction in row crop agriculture and an increase in pasturelands. This study shows that the flood plains in the Stemple Creek Watershed are a significant sink for the soils being eroded from the upland area. Given the significance of the flood plain for trapping eroded materials before they reach the stream channels or the bay, efforts need to be made to manage these flood plain areas to insure that they do not change and become a source rather than a sink for eroded materials as improved management practices on the upland areas reduce sediment input to the flood plain.  相似文献   

8.
《自然地理学》2013,34(4):269-290
Historical information on stream stage/discharge relations from eight U.S. Geological Survey (USGS) streamflow-gaging stations was used to analyze channel-bed elevation change along Soldier Creek, a stream affected by multiple disturbances in northeast Kansas. The analysis provided information on the spatial (location, type, magnitude) and temporal (timing, duration, trend, rate) dimensions of channel change. Channel changes determined for Soldier Creek included extensive changes resulting from channelization and changes of relatively limited extent following a flood. The results were used to document channel changes, partly reconstruct historical channel conditions, infer the causes of channel change, and estimate the occurrence of future channel changes.  相似文献   

9.
A simple model for estimating streamflow competence is used to assess the impact of water diversion on the retention of spawning gravels in Newhalem Creek, a small watershed in the Cascade Mountains. Surveyed stream cross sections and discharge estimates are employed to characterize the routine tractive force conditions of the streambed. A conservative estimation procedure results in tractive force values of 120–390 Nm?2for one-year, five-year, and 10-year recurrence interval events. Theoretical and empirical estimates of critical tractive force for particle sizes suggest a routine competence of 100–450 mm diameter for these flows. Substantial accumulations of bed material in the range of 1–100 mm diameter is desirable for anadromous fish spawning redds. As a result, Newhalem Creek is naturally poor habitat for spawning. Steep channel gradients and a “flashy” hydrograph conspire to routinely flush the main channel of spawning-size substrate. In this instance, the modest water diversion is immaterial to the maintenance of spawning habitat.  相似文献   

10.
In‐stream gravel mining, massive bridge piers, and channelization have all contributed to the geomorphic instability of the Lower Salt River channel in Arizona. Dam closure, changing dam operating rules, and the frequent modification of the channel bed have decreased our ability to predict the Salt River hydrology. Engineering practice has adapted to this situation and to a public that is increasingly intolerant of service disruptions by constructing larger bridges and extending levees. Building these larger structures may be counterproductive; future construction should not constrict the channel and should re‐establish a braided river to decrease the energy available to the system.  相似文献   

11.
The purpose of this study was to provide baseline data on floodplain forest structure, composition, and function that would be needed to predict and monitor the consequences of a proposed stream restoration project. This project would involve the “dechannelization” of Stokes Creek, a stream in western Tennessee that was channelized and leveed in the first half of the 1900s. To this end, we collected data on surface hydrology, soil redox potential (Eh), and the structure and composition of the floodplain vegetation of Stokes Creek. To place our findings into a regional context, we also collected comparable vegetation data from plots located along a nonchannelized stream reach of the Wolf River near Moscow, Tennessee. While hydrologic fluctuations of floodplain sites were synchronous with river dynamics for the Wolf River, the hydrology of floodplain sites at Stokes Creek was constrained by the influence of beaver dams, backflooding, and ponding of overland flow behind levees. Consequently, composition of the forest overstory, understory, and herbaceous strata was significantly different between the two sites. For example, Stokes Creek had a noticeable lack of cypress and tupelo sites, and a greater abundance of red maple. Analyses of size-class structure and woody debris quantity reinforced the existing differences between the more natural and human-impacted systems. While the current hydrology apparently has a negative affect on bottomland hardwoods, scattered regeneration stems and soil redox measurements indicate that a dechannelization effort that yielded lower water tables in the Stokes Creek floodplain potentially could increase bottomland hardwood establishment. [Key words: channelization, western Tennessee, bottomland hardwoods, hydrology.]  相似文献   

12.
为揭示三峡水库库区不同类型支流河口泥沙淤积的内在机理和变化趋势,本文充分利用水文、泥沙、固定断面和河道地形等原型观测资料,从支流水沙输移规律和河口局部水沙分布特征出发,研究了不同类型支流河口段泥沙淤积规律及主要影响因素的作用机理,探讨其淤积趋势及形成拦门沙的风险。结果表明:三峡水库蓄水后,库区不同类型支流河口普遍淤积,淤积范围及河道形态的变化各有特点;水库蓄水造成水动力条件减弱是河口泥沙淤积的根本原因,淤积幅度和范围主要取决于干支流来沙量和局部河势。在干支流来沙均明显减少的情况下,三峡水库库区支流河口泥沙淤积速度显著下降,形成拦门沙坎的可能性较小。  相似文献   

13.
The glaciers of the Hengduan Mountains play an important role in the hydrology processes of this region. In this study, the HBV Light model, which relies on a degree-day model to simulate glacier melting, was employed to simulate both glacier runoff and total runoff. The daily temperature and precipitation at the Hailuo Creek No. 1 Glacier from 1952 to 2009 were obtained from daily meteorological observed data at the glacier and from six national meteorological stations near the Hailuo Creek Basin. The daily air temperature, precipitation, runoff depth, and monthly potential evaporation in 1995, 1996, and 2002 were used to obtain a set of optimal parameters, and the annual total runoff and glacier runoff of the Hailuo Creek Glacier(1952–2009) were calculated using the HBV Light model. Results showed the average annual runoff in the Hailuo Creek Basin was 2,114 mm from 1952 to 2009, of which glacial melting accounted for about 1,078 mm. The river runoff in the Hailuo Creek catchment increased as a result of increased glacier runoff. Glacier runoff accounted for 51.1% of the Hailuo Creek stream flow in 1994 and increased to 72.6% in 2006. About 95% of the increased stream flow derived from the increased glacier runoff.  相似文献   

14.
Fluvial process and the establishment of bottomland trees   总被引:1,自引:0,他引:1  
The effects of river regulation on bottomland tree communities in western North America have generated substantial concern because of the important habitat and aesthetic values of these communities. Consideration of such effects in water management decisions has been hampered by the apparent variability of responses of bottomland tree communities to flow alteration. When the relation between streamflow and tree establishment is placed in a geomorphic context, however, much of that variability is explained, and prediction of changes in the tree community is improved.The relation between streamflow and establishment of bottomland trees is conditioned by the dominant fluvial process or processes acting along a stream. For successful establishment, cottonwoods, poplars, and willows require bare, moist surfaces protected from disturbance. Channel narrowing, channel meandering, and flood deposition promote different spatial and temporal patterns of establishment. During channel narrowing, the site requirements are met on portions of the bed abandoned by the stream, and establishment is associated with a period of low flow lasting one to several years. During channel meandering, the requirements are met on point bars following moderate or higher peak flows. Following flood deposition, the requirements are met on flood deposits ;high above the channel bed. Flood deposition can occur along most streams, but where a channel is constrained by a narrow valley, this process may be the only mechanism that can produce a bare, moist surface high enough to be safe from future disturbance. Because of differences in local bedrock, tributary influence, or geologic history, two nearby reaches of the same stream may be dominated by different fluvial processes and have different spatial and temporal patterns of trees. We illustrate this phenomenon with examples from forests of plains cottonwood (Populus deltoides ssp. monilifera) along meandering and constrained reaches of the Missouri River in Montana.  相似文献   

15.
The global cycling of anthropogenic trace metals intensified during the twentieth century, impacting aquatic systems throughout the world. There are, however, few quantitative records showing the history of this contamination in large rivers. Here we present a well-dated sedimentary record of trace metal accumulation in Lake St. Croix, a natural riverine lake on the St. Croix River (Minnesota and Wisconsin, USA), revealing the history of heavy metal inputs to the river over the past 200 years. Concentrations of Hg, Pb, Ag, Cd, Cr and Zn and stable Pb isotopes were measured in eight 210Pb-dated sediment cores collected from profundal depositional areas throughout the lake. Time trends of trace metal concentrations and accumulation rates differed greatly between the upper lake (above Valley Creek) and the lower lake, reflecting contrasting sediment sources along the flow axis of the lake. For most of the study period (1800–2000 AD), sediment deposited throughout the lake derived almost exclusively from the suspended sediment load carried by the main-stem river into the lake. From 1910 through 1970, however, large inputs of eroded soils and stream channel sediments from side-valley tributaries resulted in greatly increased sediment and trace metal accumulation in the lower lake. Anthropogenic accumulation rates of Hg, Pb, Cd, Zn, and Ag in the upper lake correlate well with those from Square Lake, a small, relatively undisturbed nearby lake that has received trace metal inputs almost exclusively via atmospheric deposition. The similarity of these records suggests that atmospheric deposition was primarily responsible for trace metal accumulation trends in upper Lake St. Croix. Trace metal accumulation in the lower lake was also strongly influenced by atmospherically derived inputs, but metal contributions from native soils were important, as well, during the period of elevated sediment inputs from side-valley tributaries. Concentrations and accumulation rates of trace metals in both upper and lower lake sediments have decreased substantially since the 1970s due to decreased atmospheric inputs and sediment loadings, but accumulation rates remain well above pre-settlement values. Metal inputs to Lake St. Croix have been far lower than those to nearby Lake Pepin, located on the Mississippi River downstream of the Minneapolis-St. Paul metropolitan area, but there nevertheless remains a clear record of anthropogenic impact on the relatively pristine St. Croix River.  相似文献   

16.
Evidence is presented here of recent and extensive infilling of the incised channel network of the Jugiong Creek catchment, SE Australia. The present channel network resulted from widespread stream and gully incision in the period between 1880 and 1920. Our survey shows that gully floors have been colonised extensively by emergent macrophyte vegetation since before 1944, forming continuous, dense, in-stream wetlands, which now cover 25% of the channel network in the 2175 km2 catchment and have so far trapped almost 2,000,000 t of nutrient-enriched, fine sediments. This mass of sediments represents the equivalent of 4.7 years of annual sediment production across the catchment and in some tributaries, more than 20 years of annual yield is stored within in-stream wetlands.Previous work on the late Quaternary stratigraphy of the region has shown that there were repeated phases of channel incision in the past following which the channels quickly stabilised by natural means and then filled with fine-grained sediment to the point of channel extinction, creating unchannelled swampy valley floors. The current formation and spread of in-stream wetlands is interpreted to be the onset of the next infill phase but it is not known whether present conditions will allow complete channel filling and reformation of the pre-existing swampy valley floors. Nevertheless, further spread of in-stream wetlands is likely to increase the sediment trapping capacity and further reduce the discharge of sediments and nutrients into the Murrumbidgee River. The in-stream wetlands may provide a significant capacity to buffer erosion from gullied catchments of considerable size (up to 300 km2) as an adjunct to current riparian management options. They may also assist the recovery of sediment-impacted channels downstream.  相似文献   

17.
戴亚南  刘再华 《热带地理》2003,23(4):324-328
介绍了贵州小七孔景区的地质构造、气候、植被、水文等自然条件,结合野外监测和室内水化学分析结果,阐述了响水河钙华形成的水化学时空变化,发现钙华沉积主要发生于气温较高,日照强烈的白天.并利用碳稳定同位素分析结果,推断该景区内河成钙华主要是起源于生物成因产生的CO2溶解石灰岩而后在河流下游产生方解石沉积的结果.  相似文献   

18.
流域水文模型对土壤数据响应的多尺度分析   总被引:3,自引:1,他引:2  
流域水文模拟对输入数据空间详细程度的要求受流域面积大小的影响,而流域面积影响作用的定量描述有助于模拟时的数据选取.本文以美国Brewery Creek流域(约19.5 k㎡)为例,在逐级连续的汇流面积上,分析了SWAT模型基于1:2.4万的SSURGO和10m分辨率的SoLIM土壤数据模拟的径流量的差别随汇流面积的变化...  相似文献   

19.
A simple rainfall simulator is described which consists of stand-alone sprinkling units with cone jet nozzles that spray downward. With a fall height of 4.57 m and water pressure of 67 kPa, the median drop size of the simulated rainfall is 2.40 mm. Rainfall from two units irrigating a 2 by 2.5 m plot has a total kinetic energy of 0.57 J/m2/s which is approximately 90% of the equivalent energy of natural rainfall at the simulation intensity of 72.4 mm/h. To simulate overland flow, perforated trickle pipes were designed that permit overland flow rates to be readily adjusted and closely controlled by simply varying the input water pressure. In field experiments in southern Arizona, rates between 572 to 1400 cm3/s were generated from a 19-mm pipe. Given their low cost, simplicity, and portability, the rainfall simulator and trickle system should be attractive to researchers working in a wide variety of geomorphic environments.  相似文献   

20.
The valley‐fill sequence of Nowlands Creek, a 5.5 km2 basin in the Central Lowlands of the Hunter Valley, is characterised by three inset river terraces whose sediments contain either Aboriginal or European artefacts. The highest and oldest terrace is characterised by a well‐developed yellow duplex soil with Aboriginal artefacts in the A horizon. Deposition of the bulk of the terrace sediments occurred before 11 400 yrs BP when Nowlands Creek was a low‐sinuosity, high‐energy, gravel‐bed stream. Texture contrast of the terrace soil is due partly to the superpositioning of Holocene sandy colluvium over Pleistocene fluviatile clay. The middle terrace is characterised by a deep minimal prairie soil containing Aboriginal artefacts. Deposition of the middle‐terrace sediments occurred mainly after 11 400 yrs BP when Nowlands Creek was a small‐capacity, mud‐bed channel with chains of ponds and well‐vegetated banks. The lowest terrace occupies a discontinuous trench incised into the middle terrace and was abandoned by incision between 1902 and 1938 due to open‐cut coal mining. All Aboriginal artefacts found so far are confined to Holocene sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号