首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
The stable isotope values of carbon (δ13Cmethane) and hydrogen (δ2Hmethane) from methane molecules trapped in gas hydrates are useful for differentiation of methane from microbial and thermal origins, providing valuable information during hydrocarbon exploration. Recent studies have reported catalysis of methane hydrates when smectite clays and biosurfactants are present in hydrate-hosting sediments, but catalytic influences on the values of δ13Cmethane and δ2Hmethane are not well documented. In this study, pressure vessel methane hydrates were formed from solutions in contact with smectite clays (montmorillonite and nontronite) and biosurfactants (rhamnolipids and surfactin). Experiments show less than 1‰ differences in values of δ13Cmethane between free and encaged molecules and up to 10‰ variations in values of δ2Hmethane between free and encaged molecules. Notably, methane consumption increased in methane hydrates formed from solutions containing biosurfactants and biosurfactant–smectite mixtures. Results presented here indicate that a hydrate formed in the presence of smectite clays and biosurfactants are characterized by small shifts in free and encaged values of δ13Cmethane and δ2Hmethane and do not complicate interpretation of gas origin. In contrast, methane consumption in hydrates formed under the catalytic effect of smectite clays and biosurfactants modifies gas wetness, obscures gas origin and complicates interpretation of thermal maturity.  相似文献   

2.
The Shenhu gas hydrate drilling area is located in the central Baiyun sag, Zhu Ⅱ depression, Pearl River Mouth basin, northern South China Sea. The gas compositions contained in the hydrate-bearing zones is dominated by methane with content up to 99.89% and 99.91%. The carbon isotope of the methane (δ13C1 ) are 56.7‰ and 60.9‰, and its hydrogen isotope (δD) are 199‰ and 180‰, respectively, indicating the methane from the microbial reduction of CO2 . Based on the data of measured seafloor temperature and geothermal gradient, the gas formed hydrate reservoirs are from depths 24-1699 m below the seafloor, and main gas-generation zone is present at the depth interval of 416-1165 m. Gas-bearing zones include the Hanjiang Formation, Yuehai Formation, Wanshan Formation and Quaternary sediments. We infer that the microbial gas migrated laterally or vertically along faults (especially interlayer faults), slump structures, small-scale diapiric structures, regional sand beds and sedimentary boundaries to the hydrate stability zone, and formed natural gas hydrates in the upper Yuehai Formation and lower Wanshan Formation, probably with contribution of a little thermogenic gas from the deep sedments during this process.  相似文献   

3.
Structures and carbon isotopic compositions of biomarkers and kerogen pyrolysis products of a dolomite, a bituminous shale and an oil shale of the Kimmeridge Clay Formation (KCF) in Dorset were studied in order to gain insight into (i) the type and extent of water column anoxia and (ii) changes in the concentration and isotopic composition of dissolved inorganic carbon (DIC) in the palaeowater column. The samples studied fit into the curve of increasing δ13C of the kerogen (δ13CTOC) with increasing TOC, reported by Huc et al. (1992). Their hypothesis, that the positive correlation between TOC and δ13CTOC is the result of differing degrees of organic matter (OM) mineralisation in the water column, was tested by measuring the δ13C values of primary production markers. These δ13C values were found to differ on average by only 1‰ among the samples, implying that differences in the extent of OM mineralisation cannot fully account for the 3‰ difference in δ13CTOC. The extractable OM in the oil shale differs from that in the other sediments due to both differences in maturity, and differences in the planktonic community. These differences, however, are not likely to have significantly influenced δ13CTOC either. All three sediments contain abundant derivatives of isorenieratene, indicating that periodically euxinia was extending into the photic zone. The sediments are rich in organic sulfur, as revealed by the abundant sulfur compounds in the pyrolysates. The prominence of C1-C3 alkylated thiophenes over n-alkanes and n-alkenes is most pronounced in the pyrolysate of the sediment richest in TOC. This suggests that sulfurisation of OM may have played an important role in determining the TOC-δ13CTOC relationship reported by Huc et al. (1992).  相似文献   

4.
The alternative development of coal-bearing hydrocarbon source rocks and low-porosity and low-permeability tight sandstone reservoirs of the Triassic Xujiahe Formation in the Sichuan Basin is favorable for near-source hydrocarbon accumulation. The natural gas composition of the Xujiahe Formation in the Sichuan Basin is dominated by hydrocarbon gases, of which the methane content is80.16%-98.67%. Typically, the C_2~+ content is larger than 5% in main wet gas. The dry gas is mainly distributed in the western and northern regions of the basin. The non-hydrocarbon gases mainly contain nitrogen, carbon dioxide, hydrogen, and helium, with a total content of 2%. The carbon isotope ranges of methane and its homologues in natural gas are: δ~(13)C_1 of-43.8‰ to-29.6‰, δ~(13)C_2 of-35.4‰ to-21.5‰, δ~(13)C_3 of-27.6‰ to-19.8‰,and δ~(13)C_4 of-27.7‰ to-18.8‰. δ~(13)C_3δ~(13)C_4 occurs in some natural gas with a low evolution degree; such gas is mainly coal-related gas from humic-type source rocks of the Xujiahe Formation. As for the natural gas, δ~2 H_(CH4) values ranged from-195‰ to-161‰,δ~2 H_(C2H6) values ranged from-154‰ to-120‰, and δ~2 H_(C3H8) values ranged from-151‰ to-108‰. The dry coefficient,δ~(13)C and δ~2 H_(CH4) are all positively correlated with the maturity of source rocks. The higher the maturity of source rocks is, the larger the natural gas dry coefficient is and the larger the δ~(13)C and δ~2 H_(CH_4) values are, indicative of the characteristic of near-source accumulation. The δ~2 H_(C2H6) value of natural gas is influenced by paleosalinity to a relatively large extent; the higher the paleosalinity is, the larger the δ~2 H_(C2H6) value is. The Pr/Ph value of the condensate oil ranged from 1.60 to 3.43, illustrating light oxidization-light reduction and partial-oxidization characteristics of the depositional environment of coal-bearing source rocks of the Xujiahe Formation. The natural gas light hydrocarbon(C_5-C_7) from the Xujiahe Formation presented two characteristics: the first was the relatively high aromatic hydrocarbon content(19%-32.1%), which reveals the characteristic of natural gas with humic substances of high-maturity; the second was the low content of aromatic hydrocarbon(0.4%-9.3%),reflecting water-washing during the accumulation of the natural gas. The reported research outcomes indicate a potential mechanism for natural gas accumulation in the Xujiahe Formation, which will further guide natural gas exploration in this region.  相似文献   

5.
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated.Compared with the carbon isotopic composition of the source methane (δ13C1 = −39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff −δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed.The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous “semi-infinite” shale caprock over a period of 10 Ma.In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas.The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.  相似文献   

6.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   

7.
We present the stable C isotope record of the changes within the past 20 yr in water level of two morphologically different lakes in central Poland. The aim was to explain the relationship between lake water level and the δ13C signature of bulk sedimentary organic matter (δ13CTOC) and to assess the potential of δ13CTOC as a paleolimnological proxy of lake level change. This was done by comparison of the fossil δ13CTOC record with instrumental data for lake level change in a shallow and small lake as well as in one large and deep basin. In both lakes the water table varied greatly between 1980 and 2000 AD. The δ13CTOC data were supplemented with δ15N and bulk geochemistry data, as well as paleoecological data. We show that δ13CTOC reacted to short term and low amplitude fluctuation in water level, but the response was highly dependent on the morphometry of the lake. In the shallow and small basin, δ13CTOC decreased along with lake level drop due to oxidation and greater input of organic matter from macrophytes colonizing the lake bottom. On the contrary, in the deep/large lake δ13CTOC decreased with increasing water level due to enhanced delivery of soil-derived OM to the lake during highstands. Our results have broad paleolimnological implications as they show that δ13CTOC cannot act as a universal paleohydrological proxy. Its interpretation for a particular lake can be ambiguous and must be supported with additional geochemical and paleocological information.  相似文献   

8.
Second‐order transgressive–regressive (T–R) cycles, previously recognized using sedimentological criteria in Lower Jurassic hemipelagic deposits from northern Spain, are distinguishable based upon bulk‐rock organic geochemistry [total organic carbon (TOC) and hydrogen index (HI)] and the stable carbon isotope compositions from belemnite rostra. There is a coincidence between regressions and decreasing δ13Cbel, TOC and HI values, and between transgressions and increasing δ13Cbel, TOC and HI values. The δ18O and Mg/Ca records from the belemnite rostra are not always in phase with the T–R cycles. The δ18Obel record reveals, however, a prominent excursion towards higher values within the spinatum Zone that correlates, according to our results, with a regression and with negative shifts in Mg/Ca, δ13Cbel and TOC. On the other hand, an excursion in the δ18Obel towards lower values in the serpentinus Zone also correlates with a peak transgression and with positive shifts in Mg/Ca, δ13Cbel and TOC. These two excursions have been identified in other European regions as geochemical perturbations of the same characteristics. This suggests a link between second‐order relative sea‐level changes and variations in seawater geochemistry that may reflect local and regional palaeoceanographic perturbations in sea‐water temperature, salinity and water circulation during the Early Jurassic. Terra Nova, 18, 233–240, 2006  相似文献   

9.
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone.Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (> 99.85 mol.% of ∑[C1–C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (δ13C = ? 53.5‰ V-PDB; D/H around ? 175‰ SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by > 0.03 mol.% (∑[C1–C4, CO2]) relative to the other gas types and the virtual lack of 14C–CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely.As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% ∑(C1–C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C–CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.  相似文献   

10.
天然气水合物是一种新型的洁净能源。甲烷天然气水合物是储量最丰富的一种类型,常出现在深海中或极地大陆上,其生成的过程中会发生同位素的分馏效应。通过实验室模拟水合物生成的过程,利用天然海水与甲烷或二氧化碳气体反应,以及更接近实际生成环境的甲烷-海水-沉积物动态聚散实验,对甲烷水合物和二氧化碳水合物生成前后δ13C值进行测定,研究水合物生成过程中δ13C的变化情况。实验证明,水合物反应中碳同位素分馏是存在的,其变化程度明显小于氧同位素和氢同位素。甲烷水合物碳同位素的分馏系数αC的值为1000 3~1000 9。二氧化碳水合物生成反应后气相的碳、氧同位素变轻,重同位素趋向于进入水合物中,二氧化碳水合物碳同位素的分馏系数αC的值为1000 7~1001 2。海水中溶解的CO2气体在甲烷水合物形成过程中会被水合物捕获,从而使得δ13CDIC值变小,重的碳同位素趋于进入水合物中,而较轻的碳同位素留在海水中。但由于海水中含有的溶解CO2气体有限,经过多轮水合物动态聚散后δ13CDIC值的变化幅度会越来越小。  相似文献   

11.
The carbon stable isotopic value of dissolved inorganic carbon (δ13CDIC) was measured over several years at different depths in the water column in six carbonate-precipitating temperate lakes. δ13CDIC behavior in three of these lakes departed from the conventional model wherein epilimnetic waters are seasonally enriched relative to all hypolimnetic waters, and in general δ13CDIC values in the water column were not readily correlated to parameters such as lake stratification, algal productivity, hydraulic residence time, or water chemistry. Additionally, the processes implicated in generating the δ13CDIC values of individual lakes differ between lakes with similar δ13CDIC compositions. Each lake thus initially appears idiosyncratic, but when the effects of carbonate mineral equilibria, microbial activity, and lake residence time are viewed in terms of the magnitude of distinct DIC pools and fluxes in stratified lakes, generalizations can be made that allow lakes to be grouped by δ13CDIC behavior. We recognize three modes in the relationship between δ13CDIC values and DIC concentration ([DIC]) of individual lakes: (A) δ13CDIC values decreasing with increasing [DIC]; (B) δ13CDIC values increasing with increasing [DIC]; (C) δ13CDIC values decreasing with increasing [DIC] but increasing again at the highest [DIC]. This approach is useful both in understanding δ13CDIC dynamics in modern hardwater lakes and in reconstructing the environmental changes recorded by sedimentary δ13C components in the lacustrine paleorecord.  相似文献   

12.
天然气水合物成因探讨   总被引:18,自引:0,他引:18  
天然气水合物是未来的能源资源。其分布于极地地区、深海地区及深水湖泊中。在海洋里,天然气水合物主要分布于外大陆边缘和洋岛的周围,其分布与近代火山的分布范围具有一致性。同位素组成表明天然气水合物甲烷主要是由自养产甲烷菌还原CO2形成的。典型的大陆边缘沉积物有机碳含量低(<0.5%~1.0%),不足以产生天然气水合物带高含量的甲烷。赋存天然气水合物的沉积物时代主要为晚中新世-晚上新世,具有一定的时限性,并且天然气水合物与火山灰或火山砂共存,表明其形成与火山-热液体系有一定联系。火山与天然气水合物空间上的一致性表明,天然气水合物甲烷的底物可能主要是由洋底火山喷发带来的CO2。由前人研究结果推断 HCO3在脱去两个O原子的同时,可能发生了亲核重排,羟基 H原子迁移到 C原子上,形成了甲酰基(HCO),使甲烷的第一个 H原子来源于水。探讨了甲烷及其水合物的形成机制,提出了天然气水合物成因模型。  相似文献   

13.
The presence of shale oil in the Cretaceous Hengtongshan Formation in the Tonghua Basin, drilled by the well TD-01, has been discussed in this geological investigation for the first time. To evaluate the high-quality source rocks of Cretaceous continental shale oil, the distribution characteristics and the evolution of the ancient environment, samples of shale were systematically analyzed in terms of sedimentary facies, organic geochemistry, and organic carbon isotopic composition. The results demonstrate that a TOC value of 1.5% represents the lower-limit TOC value of the high-quality source rocks. Source rocks have an aggregate thickness of 211 m and contain abundant organic matter, with TOC values of 2.69% on average and a maximum value over 5.44%. The original hydrocarbon-generative potential value(S_1+S_2) is between 0.18 mg/g and 6.13 mg/g, and the Ro is between 0.97% and 1.40%. The thermal maturation of the source rocks is relatively mature to highly mature. The δ13C value range is between -34.75‰ and -26.53‰. The ratio of saturated hydrocarbons to aromatic hydrocarbons is 1.55 to 5.24, with an average of 2.85, which is greater than 1.6. The organic types are mainly type Ⅱ_1, followed by type Ⅰ. The organic carbon source was C_3 plants and hydrophytes. The paleoclimate of the Hengtongshan Formation can be characterized as hot and dry to humid, and these conditions were conducive to the development of high-quality source rocks. A favorable paleoenvironment and abundant organic carbon sources provide a solid hydrocarbon generation base for the formation and accumulation of oil and gas in the shale of the Tonghua Basin.  相似文献   

14.
The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and δ13CTC values ranging from −28.7‰ to +2.3‰. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (δ13CTOC: −28.9‰ to −21.5‰) and variations in δ13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important—as yet unidentified—reservoir for dissolved organic carbon (DOC) from seawater.  相似文献   

15.
结合含水量、TOC含量和TOC/TN比值变化曲线,18·5kaB·P·以来的四海龙湾玛珥湖沉积物全岩有机碳同位素组成(δ13CTOC)记录可划分为3个阶段:1)末次冰期晚期(18·5~14·7kaB·P·),δ13CTOC值偏正,变化范围为-29·50‰~-26·18‰,平均值约为-28·10‰;2)末次冰消期(14·7~11·7kaB·P·),δ13CTOC值显著偏负,变化范围为-33·92‰~-28·40‰,平均值约为-31·75‰,在δ13CTOC值变化曲线上表现为一个低谷,但在类似YoungerDryas的冷干事件期间(12·7~11·7kaB·P·),δ13CTOC值再次显著偏正,最高可达-28·4‰;3)全新世以来(11·7kaB·P.至今),δ13CTOC值变化幅度不大(-30·85‰~-27·37‰),基本上都在平均值-29·1‰左右。研究表明,大气CO2浓度变化是影响18·5kaB·P·以来四海龙湾玛珥湖δ13CTOC值变化的主导因素。  相似文献   

16.
In this article, we describe the geological features of the Ediacaran (upper Sinian), lower Cambrian and lower Silurian shale intervals in the Upper Yangtze Platform, South China, and report on the gas potential of 53 samples from these major marine shale formations. Reflected light microscopy, total organic carbon (TOC) measurement, Rock-Eval, carbon isotope ratio analysis, thermovaporization gas chromatography (Tvap-GC), and open pyrolysis gas chromatography (open py-GC) were used to characterize the organic matter. Measured TOC in this research is normally >2% and averages 5%. TOC contents are roughly positively correlated with increasing geological age, i.e. lower Silurian shales exhibit generally lower TOC contents than lower Cambrian shales, which in turn commonly have lower TOC contents than Ediacaran shales. Kerogen has evolved to the metagenesis stage, which was demonstrated by the abundant pyrobitumen on microphotographs, the high calculated vitrinite reflectance (Ro = 3%) via bitumen reflectance (Rb), as well as δ13 C of gas (methane) inclusions. Pyrolysates from Tvap-GC and open py-GC are quantitatively low and only light hydrocarbons were detected. The lower Silurian shale generally exhibits higher generation of hydrocarbon than the lower Cambrian and Ediacaran shale. Cooles’ method and Claypool’s equations were used to reconstruct the original TOC and Rock-Eval parameters of these overmature samples. Excellent original hydrocarbon generation was revealed in that the original TOC (TOCo) is between 5% and 23%, and original S1+S2 (S1o+S2o) is ranging from 29 to 215 mg HC/g rock.  相似文献   

17.
Biogeochemical processes involving acetate in sub-seafloor sediments from piston core PC23B from the Bering Sea shelf break were inferred by examining the stable carbon isotopic relationships between acetate and other relevant carbon compounds: total organic carbon (TOC) in the sediment solid phase, and dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in pore water. Throughout the core, the isotopic composition of acetate (δ13Cacetate), from −31‰ to −29‰, was 13C-depleted by ca. 7‰ vs. DOC (δ13CDOC) and its depth profile approximately paralleled that of δ13CDOC, suggesting that the principal process producing acetate was fermentation of dissolved organic compounds. However, the 13C depletion in δ13Cacetate indicates some contribution of acetogenesis to total acetate production, because acetogenesis results in 13C depletion of the acetate produced. The relative contribution of acetogenesis via the H2/CO2 reaction, calculated by using a two source isotope mixing model, increased with depth in the sulfate reduction zone from 10% to 15% and was constant at 19% in the methanogenic zone. The acetogenic contribution to acetate production in the methanogenic zone underlying the sulfate reduction zone is consistent with reported observations, whereas the occurrence of acetogenesis in the sulfate reduction zone may be related to the contribution of terrestrial organic matter (OM) to the sedimentary OM in that depth interval, because the terrestrial component likely includes precursors that favor organoautotrophic acetogenesis. The high acetate concentration (up to 81 μM) and TOC content (up to 1.4%) at the same depth (<200 cmbsf) suggest that some relationship exists between acetate production rate and TOC content, or that a temperature increase during core storage at room temperature might stimulate acetate-producing microbial activity in the high TOC sediment.  相似文献   

18.
The distribution of δ13C values for organic seston and sediment was determined in three sounds in the Spartina marsh estuaries along the Georgia coast, which had high, moderate, and low inputs of freshwater. Organic matter in all three sounds had similar carbon isotope compositions, for the most part within the range of marine values (δ13C of ?18%. to ?24%.). It appears that river flow does not introduce significant quantities of particulate C3 plant material (δ13C of ?25%. to ?28%.) to Georgia estuaries. Evaluation of δ13C values of estuarine seston and three size fractions of sediment indicated that while Spartina carbon (δ13C of ?13%.) can be an important component of organic matter in intertidal sediments (mean δ13C of ?14.3%. to ?20.0%.), it is less so in subtidal sediments (mean δ13C of ?18.8%. to ?21.2%.), and it is hardly present at all in the seston (mean δ13C of ?24.5%.). δ13C values of dissolved inorganic carbon (DIC) in several water samples ranged between ?2.5%. and ?5.6%., suggesting that the isotope composition of estuarine DIC is influenced by respiratory CO2 derived from metabolism of 13C-depleted plant carbon. Phytoplankton production utilizing this comparatively light DIC could be a source of relatively negative δ13C carbon in the estuary. Additional origins of estuarine organic matter greatly depleted in 13C compared to Spartina carbon remain to be identified.  相似文献   

19.
Because of the unique geographical location and important ecological effect of the Qinling Mountains,reconstruction of its vegetation and climate needs comprehensive research.We need to consider a multiple-proxy approach to gain more information on recovering the paleovegetation and climate in the Qinling Mountains.Black carbon(BC)is produced by the incomplete combustion of vegetation and fossil fuels,and is a good proxy,recording paleoenvironmental information.However,in the Qinling Mountains,what are the characteristics of the BC,and whether BC stable carbon isotope(δ~(13)C_(BC))can be used as a new proxy to study ancient vegetation,still need further study.In order to establish a sound basis for studying paleoenvironmental by BC proxy in the Qinling Mountains,we carried out systematic and detailed study on modern process of BC on the northern slope of the mountains.We analyzed stable carbon isotopes and carbon concentration of organic carbon(%SOC,δ~(13)C_(SOC))and BC(%BC,δ~(13)C_(BC)),and identified the pollen assemblages from systematically sampled surface soil.The results show that the calculated ratio of C_4 plants in the vegetation(%C_4)based on theδ~(13)C_(SOC)data reflects a similar distribution of C_4 plants in the surface vegetation and the pollen assemblage.Theδ~(13)C_(BC)values have a strong positive correlation withδ~(13)C_(SOC)values,and their difference(△~(13)C_(SOC-BC))is in the low range.These data indicate thatδ~(13)C_(BC)andδ~(13)C_(SOC)have very similar characteristics.Surface soilδ~(13)C_(BC)values can indicate surface vegetation as effectively asδ~(13)C_(SOC)values,and theδ~(13)C_(BC)proxy can be used effectively in paleovegetational research in the northern slope of Qinling Mountains.  相似文献   

20.
In a fluvial system, depending on sub‐aerial exposure, non‐pedogenic pond calcretes can be modified into pedogenic calcretes. The present study attempts to understand the effect of sub‐aerial exposure and pedogenesis on calcretes using carbon and oxygen isotopic composition. For this purpose, two profiles (profile‐A and profile‐B) from the same stratigraphic level in Rayka from the western part of India were selected. The profiles are separated by a distance of 500 m and showed differences in calcrete characteristics. In profile‐A, the calcretes showed pedogenic features (root traces and void filling spar) whereas calcretes in profile‐B showed non‐pedogenic characteristics (fine laminations). However, some of the calcretes in profile‐A exhibited remnants of fine laminations suggesting that initially the calcretes had a non‐pedogenic origin but were modified due to pedogenesis. In profile‐A, the carbon and oxygen isotope values of pedogenic calcrete (δ13CPC and δ18OPC) showed more variation compared with non‐pedogenic pond calcretes (δ13CSPC and δ18OSPC) in profile‐B. The δ13CPC and δ13CSPC values exhibited a spread of 3·0‰ and 1·3‰, respectively, and δ18OPC and δ18OSPC values showed a spread of 2·3‰ and 1·3‰, respectively. The differences in the isotopic composition between the two profiles suggest that pedogenesis controlled the isotopic inheritance in calcretes. In addition, the carbon isotopic composition of organic matter (δ13COM) and n‐alkanes (δ13Cn‐alk) that forms the basis of palaeovegetational reconstruction have also been measured to understand the effect of pedogenesis on organic matter in both of the profiles. The average δ13COM values in profile‐A and profile‐B are ?23·4‰ and ?21·1‰, respectively. The disparity in δ13COM values is a result of the difference in the sources and preservation of organic matter. However, the δ13Cn‐alk values show a similar trend in profile‐A and profile‐B, indicating that sources of n‐alkanes are the same in both of the profiles and δ13Cn‐alk values are unaffected by the pedogenic modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号